Методы повышения качества управления судном на основе использования нейросетевых технологий




НазваниеМетоды повышения качества управления судном на основе использования нейросетевых технологий
страница1/3
Дата01.03.2013
Размер0.53 Mb.
ТипАвтореферат
  1   2   3

На правах рукописи




Глушков Сергей Витальевич



МЕТОДы повышения качества управления

судном на основе использования нейросетевых технологий


05.22.19 – Эксплуатация водного транспорта, судовождение


Автореферат диссертации на соискание ученой степени

доктора технических наук




Владивосток – 2008



Работа выполнена в Федеральном государственном образовательном

учреждении высшего профессионального образования Морском

государственном университете имени адмирала Г. И. Невельского


Официальные оппоненты:


доктор технических наук, профессор Васьков Анатолий Семенович; доктор технических наук, профессор Розенбаум Анатолий Наумович

доктор технических наук, профессор Жирабок Алексей Нилович


Ведущая организация – Федеральное государственное унитарное предприятие «Государственный научно-исследовательский

навигационно-гидрографический институт

Министерства обороны Российской Федерации»


С диссертацией можно ознакомиться в библиотеке Морского государственного университета имени адмирала Г. И. Невельского


Защита состоится 08 октября 2008 г. в 14 часов на заседании совета по защите докторских и кандидатских диссертаций Д 223.005.01 при Морском государственном университете имени адмирала Г. И. Невельского:

690059, г. Владивосток, 59, ул. Верхнепортовая, 50а, учебный корпус 1,

аудитория №241.


Отзывы присылать по адресу: 690059 г. Владивосток, ул. Верхнепортовая, 50а, Морской государственный университет имени адм. Г. И. Невельского, ученому секретарю Совета Д 223.005.01, тел. Факс (4232) 41-49-68


Автореферат разослан «____» июля 2008 г.


Ученый секретарь совета Резник А. Г.

по защите докторских и

кандидатских диссертаций

Общая характеристика работы


Актуальность проблемы.

Современный этап развития систем мореплавания в мире характеризуется существенными достижениями науки и техники в деле разработки, создания, массового производства высоконадёжной техники судовой навигации, радиосвязи, информатизации и автоматизации судовождения в сложных условиях инфраструктуры акваторий портов, проливов и каналов. В настоящее время во многих морских державах мира разрабатываются новые, более сложные, и в тоже время обладающие большей функциональной нагрузкой системы, позволяющие автоматизировать процесс судовождения. Первопричин такого рода разработок несколько.

Во-первых, необходимость обеспечения безопасного мореплавания в условиях все увеличивающейся интенсивности судоходства, резкий рост цен на топливо для судовых силовых установок, усиление экологических аспектов эксплуатации морского флота, строительство крупнотоннажных и скоростных судов, управление которыми на должном уровне требует дополнительных средств автоматизации процессов. Это позволяет уменьшить потери ходового времени, снизить себестоимость перевозок, сократить численность экипажей, повысить надежность оборудования, качество проводимых операций управления и потому является наиболее эффективным средством повышения тактико-эксплуатационных характеристик судов и условий труда плавсостава.

Во-вторых, для автоматизированного решения многих навигационных задач, связанных с расхождением с судами, когда требуется реализация определенных маневров, при удержании судна на заданном курсе, или движении по любой необходимой траектории с прогнозированием возможной ситуации и др., необходим адаптивный авторулевой, оптимально настраивающий параметры системы. Такой адаптивный авторулевой должен обеспечивать корректировку математических моделей судна и внешних сил, которые воздействуют в данный момент на судно. Поэтому возникла необходимость в разработке новых адаптивных авторулевых на основе технологий искусственного интеллекта.

Необходимо также отметить, что в Федеральной целевой программе «Глобальная навигационная система. Технология высокоточной навигации и управления движением», утвержденной президентом Российской Федерации на период до 2011 года, особое место отводится разработке интеллектуальных систем. Программа предполагает разработку и создание интегрированных информационных навигационных комплексов, обеспечивающих принятие решений капитаном по всему аспекту навигационных задач, связанных с обработкой и хранением информации, прогнозированием ситуаций и более эффективному их решению. Также следует отметить требование Международной морской организации (IMO) к системам управления движением судна, которое указывает на необходимость обеспечения стабилизации судна на заданной траектории и определенном курсе.

В связи с этим разработка современных автоматизированных систем, обеспечивающих движение судна по заданной траектории, удержание на заданном курсе в условиях изменяющихся погодных факторов, ограниченности маневра и интенсивности движения, оперативная автоматическая коррекция выбранного пути и скорости движения являются приоритетными задачами.

Развитие научно-технического прогресса, оснащение современных судов микропроцессорной техникой и вычислительными машинами при разработанном прикладном математическом и программном обеспечении позволяют решить поставленные задачи.

Проблемная ситуация. С одной стороны, системы автоматического управления курсом судна должны:

– отвечать в полной мере растущим требованиям по обеспечению безопасности плавания, по точности движения на заданном маршруте, надежности, системности выделения и комплексной обработки информации от разнородных приборов;

– обеспечивать оптимальную, в определенном смысле, настройку параметров системы в режиме реального времени без участия вахтенного штурмана;

– корректировать математическую модель системы при изменении гидродинамических характеристик объекта.

С другой стороны, строгое решение задачи управления движением судна, которые обеспечивает синтез управления в реальном времени и заданного качества в общем случае, не удается получить с помощью используемых сегодня систем автоматического управления курсом судна с традиционным ПИД–регулятором и применяемых методик его настройки. Это вызвано тем, что во время эксплуатации системы параметры и внешние воздействия меняются случайным образом и изменяются в широком диапазоне (направление и сила ветра, высота и длина волны, гидродинамические характеристики судна, осадка, глубина воды под килем, скорость хода судна).

В зависимости от реализуемых принципов адаптации можно классифицировать несколько типов адаптивных авторулевых.

– Адаптивные авторулевые, характеризующиеся частичной автоматической настройкой параметров системы, в которых используются косвенные критерии оценки качества работы системы. Они не всегда имеют достаточное математическое обоснование. (TSN-2 –Польша, ASAP-II–Швеция). Эти авторулевые не обеспечивают полной оптимизации системы управления курсом судна в различных ситуациях, реализуют традиционный ПИД- закон управления.

– Адаптивные авторулевые с использованием эталонной математической модели объекта или всей системы управления в целом. Управляющий сигнал формируется в зависимости от критерия качества движения судна, являющегося функцией от разности между наблюдаемым и моделируемым курсом судна (Ракал-Декка DP-780- Великобритания).

– Адаптивные авторулевые с самонастраивающейся системой, в которых оптимальное значение настраиваемых параметров определяется по математическому критерию качества, обеспечивающему минимум потерь полезной мощности судовой силовой установки. Такие авторулевые используют априорную информацию о динамике системы управления курсом судна для различных условий плавания, которая хранится в памяти бортовой ЭВМ. Получая информацию от судового гирокомпаса, лага, указателя положения пера руля, ЭВМ по специальной программе выбирает соответствующие оптимальные параметры настройки (Sperry autopilot ASCS, NAVIPILOT AD II – США).

Из отечественных авторулевых можно выделить: ААР-05 – Владивосток 2005 год и NAVIS AP-3000 – Cанкт-Петербург 2007 год (для последнего не указан метод адаптации).

Анализ эксплуатации вышеописанных адаптивных авторулевых показывает их более высокие характеристики качества управления и технико-экономическую эффективность по сравнению с традиционными авторулевыми, реализующими ПИД–закон управления. Но, несмотря на большое количество публикаций, проблема разработки адаптивного авторулевого все еще не нашла должного решения на уровне современных требований управления судном на всех режимах работы и круга решаемых навигационных задач.

С появлением перспективного класса нейросетевых систем управления положение изменяется. Появляются новые возможности обеспечения этих требований на основании прикладной теории нейросетевого управления и новой элементной базы (микроконтроллеры, сигнальные процессоры, нейросетевые процессоры). Нейросетевая система, как самоорганизующаяся, способна управлять процессами в сложных условиях (нестационарных, нелинейных, со случайными внешними воздействиями), математические модели которых неизвестны.

Разрешать указанную проблему необходимо путем разработки новых систем на основе использования технологий искусственного интеллекта, комплексной обработки навигационной информации и в результате этого обеспечить требуемое качество управления судном.

Следовательно, необходимость разработки новых научно обоснованных методов создания систем управления судном на основе нейросетевых интеллектуальных систем определяет актуальность крупной научно-технической проблемы, решаемой в диссертации.

Научный базис для решения проблемы. Анализ опубликованных в 1980–2007 годах работ отечественных и зарубежных ученых (Красовский А.А., Пешехонов В.Г., Колесников А.А., Астанов Ю.М., Медведев В.С., Иванов В.А., Фалдин Н.В., Лукомский Ю.А., Корчанов В.И., Скороходов Д.А., Веллер В., Басин А.И., Суевалов Л.Ф., Фрейдзон И.Р., Квакернаак Х., Бессонов А.А., Соболев Г.В. Березин С.Я., Тетюев Б.А. и др.) по классическим методам построения систем автоматического управления и курсом судна в частности, позволяет классифицировать методы по типу используемой математической модели судна, обрабатываемой информации, методам адаптации, конструктивным особенностям. Большая часть научных трудов авторов (Хайкин С., Weierstrass K., Колмогоров А.Н., Hecht-Nielsen r., Stone M., Горбань А.Н.,Терехов В.А., Миркес Е.М., Ефимов Д.В., Тюкин И.Ю., Егупов Н.Д., Омату С., Халид М., Юсуф Р., Mandani E.H., Nomoto K. И др.) посвящена вопросам построения нейросетей и их использования в системах управления. На основе этих работ формируется научное направление «Адаптивные и робастные системы управления движением судна на основе искусственного интеллекта».

Цель работы. Целью диссертационного исследования является разработка теоретических основ и принципов создания робастных адаптивных систем управления судном на основе определения областей работоспособности, с заданной вероятностью обеспечивающих требуемое качество управления, выполненных на базе нейросетевых технологий.

Область исследования – разработка моделей и методов оценки эффективности судовождения в различных условиях их эксплуатации.

Объектом исследования являются методы и средства навигации и судовождения, в частности, системы автоматического управления курсом судна, а предметом исследования – робастные адаптивные системы управления курсом судна и методы, обеспечивающие требуемую точность и качество управления при неопределенности гидродинамических характеристик судна и внешних климатических воздействий.

Решение научной проблемы в соответствии со сформулированной целью включает в себя следующие научные задачи:

  1. Разработка теоретических основ определения математической модели системы автоматического управления курсом судна, обеспечивающей робастность системы к внешним воздействиям и технологическим отклонениям параметров в некоторой области работоспособности.

  2. Обоснование принципов определения существования областей работоспособности – областей допустимых вариаций параметров системы автоматического управления курсом судна в различных условиях эксплуатации.

  3. Доказательство методов определения конфигурации области допустимых вариаций параметров системы автоматического управления курсом судна.

  4. Разработка принципов определения оптимальных значений параметров системы автоматического управления курсом судна с учетом возможного диапазона изменений внешних воздействий и изменения внутренних параметров системы на основе аппроксимации областей работоспособности, позволяющая создать алгоритмы и программное обеспечение для поставленной задачи.

  5. Представление принципиально новой модели самоорганизующейся системы автоматического управления курсом судна на базе нейросетевых технологий, позволяющая определять оптимальный тип и структуру нейронной сети, моделирующей движение судна, используемую для решения навигационных задач.

  6. Обоснование принципа определения оптимальной настройки нейросетевого регулятора системы автоматического управления курсом судна по критериальным признакам движения судна на курсе, позволяющая обеспечить требуемое качество и точность движения судна на курсе.



Основные положения, выносимые на защиту:

  1. Классификация систем автоматического управления курсом судна.

  2. Принцип определения математической модели системы автоматического управления курсом судна, который обеспечивает робастность системы к внешним воздействиям и технологическим отклонениям параметров в некоторой области работоспособности.

  3. Принципы определения существования областей работоспособности – областей допустимых вариаций параметров системы автоматического управления курсом судна, не нарушающих с заданной вероятностью требований качества и точности управления судном на курсе.

  4. Принципы определения конфигурации области допустимых вариаций параметров системы автоматического управления курсом судна, которые обеспечивают учет возможного диапазона внешних воздействий.

  5. Методы определения оптимальных значений параметров системы автоматического управления курсом судна с учетом возможного диапазона изменений внешних воздействий и изменения внутренних параметров системы на основе аппроксимации областей работоспособности, позволяющие создать алгоритмы и программное обеспечение для поставленной задачи.

  6. Функциональная модель самоорганизующейся системы автоматического управления курсом судна на базе нейросетевых технологий. Система позволяет определять оптимальный тип и структуру нейронной сети, моделировать движение судна необходимое для решения навигационных задач.

  7. Принцип определения оптимальной настройки нейросетевого регулятора системы автоматического управления курсом судна по критериальным признакам движения судна на курсе, позволяющий обеспечить требуемое качество и точность движения судна на курсе.

  8. Алгоритмы и программное обеспечение для технической реализации системы автоматического управления курсом судна на базе нейросетевых технологий.

  9. Опытная модель разработанного образца адаптивного регулятора системы автоматического управления курсом судна.

Методы исследования. При решении поставленных научных задач использовались методы системного анализа, корреляционного и спектрального анализа случайных процессов, имитационного моделирования и натурного эксперимента, положения теории автоматического управления, методы нейросетевого управления, методы линейного и нелинейного программирования.

Научная новизна работы:

1. Предложен и теоретически обоснован принцип определения математической модели системы автоматического управления курсом судна, обеспечивающей робастность системы к внешним воздействиям и технологическим отклонениям параметров посредством определения области работоспособности. Принцип предполагает в режиме реального времени на основании наблюдаемых характеристик движения судна на курсе и известного управления, в пространстве размерности математической модели судна определяется область допустимых значений параметров модели.

2. Рассмотрен и теоретически обоснован принцип определения существования областей параметров, обеспечивающих работоспособность системы автоматического управления курсом судна. Предложенный принцип позволяет на основании уточненной математической модели судна для предполагаемого диапазона внешних воздействий в пространстве параметров регулятора определяется область допустимых значений параметров регулятора, обеспечивающий с заданной вероятностью точность и качество движения на курсе.

2.1. Предложены и теоретически обоснованы метод определения существования областей допустимых вариаций параметров системы автоматического управления курсом судна и метод определения конфигурации расположения области допустимых вариаций параметров системы. Область допустимых вариаций параметров системы управления курсом судна в общем случае может быть неодносвязанной (при нелинейности математической модели), или таких областей может быть несколько.

2.2. Представлено теоретическое обоснование метода определения оптимальных значений параметров системы автоматического управления курсом судна с учетом возможного диапазона изменений внешних воздействий и внутренних параметров системы, т.е. определение сечения в этой области с наибольшим диапазоном изменения условий эксплуатации судна.

3. Рассмотрена принципиально новая функциональная модель самоорганизующейся системы автоматического управления курсом судна на базе нейросетевых технологий.

3.1. Для этой модели теоретически обоснованы методы определения оптимального типа и структуры нейронной сети, моделирующей объект управления, и метод определения оптимальной настройки нейросетевого регулятора системы автоматического управления курсом судна по критериальным признакам движения судна на курсе, что позволяет обеспечить требуемое качество и точность движения судна на курсе при данных внешних воздействиях.

3.2. Представлены алгоритмы и программное обеспечение для технической реализации системы автоматического управления курсом судна на базе нейросетевых технологий.

4. Создан опытный образец адаптивного регулятора системы автоматического управления курсом судна, прошедший испытания и принятый Российским Регистром морского судоходства.

Достоверность результатов доказывается корректностью применения хорошо апробированного математического аппарата и совпадением результатов теоретических исследований с данными стендовых, натурных экспериментов и имитационного моделирования работы системы управления курсом судна.

Практическая ценность работы заключается в теоретической и практической разработке всех этапов получения нейросетевой модели объекта управления, нейросетевого регулятора и на этой основе создания робастных адаптивных систем автоматического управления курсом судна. Наличие нейросетевой модели системы позволяет также моделировать, т.е. решать в автоматическом режиме реального времени, комплекс задач, связанный с оптимальной проводкой судна до точки назначения, оптимального маневрирования и расхождения судна со встречными судами и препятствиями. Результаты могут быть использованы при разработке систем управления судами, которые только проектируются либо проходят переоборудование в нашей стране. Предложенные методы синтеза робастного адаптивного авторулевого реализуемы в современной микропроцессорной аппаратной среде.

Тема связана с НИР и ОКР, проводимых на кафедрах «Технические средства судовождения» и «Автоматические и информационные системы» ФГОУ ВПО МГУ им. адм. Г. И. Невельского (ранее ДВВИМУ, ДВГМА) в соответствии с общесоюзной программой «Океан», планом НИР ММФ на 1981–1995 гг., федеральными целевыми программами «Мировой океан» (1998–2012 гг.) и «Модернизация транспортной системы России» (2002–2010 гг.), планами НИР вуза в рамках тем «Датчики навигационной информации для судового измерительного комплекса», «Повышение эффективности технических средств навигации и разработка методов их комплексного использования».

Реализация результатов работы. Результаты работы непосредственно использованы при выполнении госбюджетных и хоздоговорных НИР, которые велись на кафедрах «Автоматика и вычислительная техника», «Автоматические и информационные системы» ФГОУ ВПО МГУ им. адм. Г. И. Невельского (ДВВИМУ, ДВГМА).

Выводы и рекомендации, полученные при разработке диссертации, были внедрены в филиал ЦНИВТ (г. Владивосток) при разработке управляющих систем, в конструкторском бюро «ДАЛЬНЕЕ» лаборатории подводных аппаратов Института автоматики и процессов управления ДВО АН СССР (ныне Институт проблем морских технологий ДВО РАН) при разработке системы управления необитаемого автономного подводного аппарата, в ФГОУ ВПО МГУ им. адм. Г. И. Невельского в процессе обучения курсантов и студентов (лекции, курсовое и дипломное проектирование).

Апробация результатов работы. Основные теоретические положения подтверждены экспериментально при испытании макетных образцов адаптивного авторулевого на стендах, в морских условиях на исследовательских судах и автономном необитаемом подводном аппарате, имитационном моделировании системы автоматического управления курсом судна. При разработке макетов и программ для ЭВМ использованы результаты теоретических исследований, изложенные в диссертационной работе.

Материалы работы были доложены и одобрены на ежегодных научно-технических конференциях (НТК) ДВВИМУ (ДВГМА, МГУ) им. адм. Г. И. Невельского (1985–2007 гг.), на 5-й всесоюзной НТК «Технические средства изучения и освоения океана» в г. Ленинграде (1985 г.), на всесоюзных (всероссийских) межвузовских НТК в ТОВВМУ (ТОВМИ) им. С. О. Макарова, г. Владивосток (1988–2002 гг.), X юбилейной международной научно-практической конференции «Современные техника и технологии СТТ'2004» (Томск, 2004 г.), Всероссийской выставке научно-технического творчества (Москва, ВВЦ, 2004, 2005гг.), конкурсе научно-исследовательских работ «Наука – процветанию морской отрасли» (Владивосток, ДВМП, 2005 г.), научно-практической конференции «Молодежь и научно-технический прогресс» (Владивосток, ДВГТУ, 2006 г.), международной НТК «Наука – морскому образованию на рубеже веков» (2000 г.) в г. Владивостоке, пятой и шестой международных научно-практических конференциях «Проблемы транспорта Дальнего Востока» (2003 г. и 2005 г.), международной научной конференции «Безопасность на море. Научно-технические проблемы и человеческий фактор» (Владивосток, МГУ, 2002 , 2006, 2007 гг.), , международной выставке морского оборудования «Кормарин-2005» (Республика Корея, Пусан, 2005 г.).

Авторулевой установлен на головном судне «Ураганный», строящейся серии судов РС-450, успешно прошел швартовые, ходовые и морские испытания, утвержден Российским Регистром морского судоходства.

Публикации. По результатам исследований опубликованы две монографии и 28 работ, в том числе восемь без соавторства, получено два патента на изобретения в соавторстве и одно свидетельство об официальной регистрации программ для ЭВМ (общий объем опубликованных работ – 21,72 п. л., личное участие – 14,43 п. л.).

Структура и объем диссертации. Диссертация представлена на 244 листах машинописного текста и состоит из введения, шести глав, заключения, списка использованных источников и трёх приложений. Работа содержит 54 рисунка, 15 таблиц и список использованных источников из 229 наименований.
  1   2   3

Похожие:

Методы повышения качества управления судном на основе использования нейросетевых технологий iconКритерий Обеспечение высокого качества организации образовательного процесса на основе эффективного использования современных образовательных технологий, в том числе информационных технологий

Методы повышения качества управления судном на основе использования нейросетевых технологий iconМетодическое обоснование управления конкурентоспособностью промышленного предприятия на основе повышения качества продукции
Современный менеджмент качества направлен на создание таких систем управления, которые должны быть ориентированы, прежде всего, на...
Методы повышения качества управления судном на основе использования нейросетевых технологий iconДоклад на тему: Обновление содержания преподавания математики путём широкого использования инновационных технологий, повышения качества
Муниципальное общеобразовательное учреждение средняя общеобразовательная школа села Тумутук
Методы повышения качества управления судном на основе использования нейросетевых технологий iconРешение задачи маршрутизации на основе нейросетевых и иммунологических алгоритмов
Рассмотрена возможность использования обученного многослойного персептрона для решения задачи маршрутизации
Методы повышения качества управления судном на основе использования нейросетевых технологий iconНазвание параметра
Совершенствование государственного управления на основе использования информационно-аналитических технологий
Методы повышения качества управления судном на основе использования нейросетевых технологий iconВведение в Интернет пособие для слушателей курсов повышения квалификации в области образовательных информационных технологий, не имеющих навыков работы в Интернет
Во всем мире происходит конструктивное изменение системы образования за счет максимального использования информационных технологий...
Методы повышения качества управления судном на основе использования нейросетевых технологий iconРешение Казанской городской Думы
Казани, повышения ее доступности, качества медицинской помощи, эффективного использования ресурсов муниципального здравоохранения...
Методы повышения качества управления судном на основе использования нейросетевых технологий iconПрограмма (Syllabus) Дисциплина: Модели и методы управления
«Модели и методы управления» составлена на основе госо мон рк 2006г по специальности 050704 «Вычислительная техника и программное...
Методы повышения качества управления судном на основе использования нейросетевых технологий iconЗеленоградское окружное управление образования департамента образования города москвы
Создание модели вариативной образовательной среды и обеспечение качества образования на основе использования информационно-коммуникационных...
Методы повышения качества управления судном на основе использования нейросетевых технологий iconК. Д. Ушинский в условиях динамично меняющегося мира, глобальной взаимозависимости и конкуренции, необходимости широкого использования и постоянного развития и усложнения технологий фундаментальное значение имеет ин
Интенсивное развитие сферы образования на основе использования информационных и телекоммуникационных технологий становится важнейшим...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница