I organic air pollutants I 1 Volatile Organic Compounds (vocs)




Скачать 397.3 Kb.
НазваниеI organic air pollutants I 1 Volatile Organic Compounds (vocs)
страница14/15
Дата01.10.2012
Размер397.3 Kb.
ТипДокументы
1   ...   7   8   9   10   11   12   13   14   15

Adverse Health Effects of Electromagnetic Radiation


Very small electric currents exist in the human body even in the absence of external man-made EM fields due to the chemical reactions that occur as part of the normal body function. Although in recent years the number of publications regarding the adverse effects of EM radiation on human health has increased, not all frequencies have been fully researched and not all questions have been fully answered. However, it is known that EM fields act on the human body in a different manner according to their intensity and their frequency. For example, ELF fields, if sufficiently intense, induce circulating currents in the body stimulating the nerves or muscles. Also, the heart, which is known to be electrically active, may be affected by such interference.

Biological tissues behave as efficient absorbers of EM energy with the result of local heating. Moreover, the depth of penetration depends on the type of tissue and decreases with the increase of EM wave frequency. Usually, the thermal and the non-thermal effects of radiation on humans are hard to separate. Nevertheless, the non-thermal effects are non-linear unlike the thermal ones. In case of mobile phone calls, for example, the brain’s temperature may rise with even a degree Celsius or more. In parallel, the epiphysis gland subjected to the repeated microwave vibrations has its capabilities diminished in the same alarming manner.

Recent publications consider however that the biological human response is likely to be a function of the fields within our bodies rather than the external fields of exposure, a theory that may be difficult to approach and assess. Nevertheless, it is believed that EM fields in excess have harmful effects on humans (children in residential settings and adults in occupational settings) raging from depression and fatigue to cancer. Other associated diseases may be headaches, Alzheimer’s disease, reproduction dysfunctions, cataracts, etc. The main cancers believed to relate to EM fields exposure are leukemia (power lines), nervous system tumors and, to a lesser extent, lymphoma among children, leukemia, nervous system tumors and breast cancer among adults. The entire landscape of EM interactions with us is complex and with certainty needs to be further researched.


REFERENCES

  1. Arashidani K., Yoshikawa M., Kawamoto T., Matsuno K., Kayam F., and Kodama Y. (1996) Indoor pollution from heating. Indust. Health, 34, 205-15.

  2. Badot, PM & Badot MJ (1995). Deperissement du pin d´Alep (P. halepensis Miller) sous l´effect des embruns pollues. Ann.Sci. Univ. Fr.-Comté, Besacon, Biologie-Ecologie 3: 37-43.

  3. Bennett, W.R. Jr. (1994). Health and Low-Frequency Electromagnetic Fields, Yale University Press.

  4. Bregman, J. (1999) Environmental Impact Statements. Second edition, Boca Raton, CRC Press LLC, 248 p.

  5. Brook G. A., Folkoff M. E., and Box E. O. (1983) A world model of soil carbon dioxide, Earth Surf. Proc. Landforms, S, 79-88.

  6. Burr M. L., St.-Leger A. S., and Yamell J. W. G. (1981) Wheezing, dampness, and coal fires, Commun. Med.,. 3, 205-09.

  7. Bussotti, F., Grossoni, P., Pantani, F. (1995) The role of marine salt ad surfactants in the decline of the Tyrrhenian coastal vegetation in Italy. Ann. Sci. For., 52: 251-261.

  8. Bussotti, F., Bottacci, A.Grossoni, P., Mori, B. and Tani, C. (1997) Cytological and structural changes on Pinus pinea L. needles following the application of an anionic surfractant, Plant Cell Environ. 20: 513-520.

  9. Cebotari, I. (1995) Ph. D. Thesis, Facultatea de Medicină, Bucureşti.

  10. Chadwick, P. (1998). Occupational Exposure to EMF: practical application of NRPB guidelines. NRPB-R3401, Chilton:NRPB.

  11. Chang, L.W., in L.W. Chang, ed. (1996) Toxicology of Metals, Lewis Publisher, CRC Press, Boca Raton, Fla.

  12. Chang, L.W., in J.O. Nriagu, ed., (1979) The Biogeochemistry of Mercury in the Environment, Elsevier Biomedical Press, Amsterdam, Netherlands, pp. 519-580.

  13. Chang, L.W., in J.O. Nriagn, ed. (1981) Cadmium in the Environment, Part 2: Health Effects, John Wiley & Sons, New York, pp.783-840.

  14. Chang, L.W., in L.W. Chang and R.S. Dyer, eds. (1995) Handbook of Neurotoxicology, Marcel Dekker, Inc., New York, pp. 143-170.

  15. Chang, L.W. & Verity, M.A., in L.W. Chang and R.S. Dyer, eds. (1985) Handbook of Neurotoxicology, Marcel Dekker, Inc., New York, pp. 31-60.

  16. Choi I. S. (1983) Delayed neurological squelae in carbon monoxide intoxication, Arch. Neurol. 40, 433-35.

  17. Christian, G.D. (1994) “Analytical Chemistry”, Fifth Edition, Wiley, J. & Sons, New York.

  18. Chu, N.S., Hochberg, F.H., Calne, D.B. & Olanow, C.W., in L.W. Chang and R.S. Dyer, eds. (1995) Handbook of Neurotoxicology, Marcel Dekker, Inc., New York, pp. 91-104.

  19. Clarkson, T., Cranner, J., Sivulka, D. & co-workers (1984) Mercury Health Effects Update-Health Issue Assessment, U.S. EPA, Washington, D.C.

  20. Clarkson, T.W., in Toxicity of Agents: Metals (Continuing Education Course #3), (1991) Society of Toxicology Meeting, Dallas, pp. 26-44.

  21. Clement, R.E., Yang, P.W., Koester, C.J. (2001) Anal. Chem., 73, 2761-2790.

  22. Clements-Croome, D. (2004) Electromagnetic Environments and Health in Buildings, Spon Press, London.

  23. Committee on Evaluation of EPA Guidelines for Exposure to Naturally Occurring Radioactive Materials Board on Radiation Effects Research Commission on Life Sciences, Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials, National Academy Press, Washington DC, (1999).

  24. Cory-Slechta, D.A. & Pounds, J.G., in L.W. Chang and R.S. Dyer, eds. (1995) Handbook of Neurotoxicology, Marcel Dekker, Inc., New York, pp. 61-90.

  25. Criteria Air Contaminants (CAC). The 1995 National Emissions Inventory for Atmospheric Ammonia. Air Pollutant Emission. http://www.ec.gc.ca/pdb/ape/cape_home_e.cfm

  26. De Matteo, B. (1986) Terminal Shock: The Health Hazards of Video Display Terminals, NC Press Ltd., Toronto.

  27. Derwent R.G. and Davies T.J. (1994) Modelling the impact of NOx or hydrocarbon control on photochemical ozone in Europe. Atm. Env., 28, 2039-2052.

  28. Eisler, R. (2000) Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants and Animals, CRC Press LLC.

  29. Enke, C.G. (2001) The Art and Science of Chemical Analysis, John Wiley & Sons, New York.

  30. Ethridge D. M., Pearman G, I., and Fraser P. J. (1992) Changes in tropospheric methane between 1841 and 1978 from a high accumulation rate Antarctic ice core, Tellus, 44B, 282-94.

  31. Federal Trade Commission (1936) Docket No. 2825, Cushing Refining & Gasoline Co, June 19, 1936, Dept. of Justice files, 60-57-107, National Archives, Washington, DC.

  32. Ferek R. J., Reid J. S., Hobbs P. V., Blake D. R., and Liousse C. (1998) Emission factors of hydrocarbons, halocarbons, trace gases, and particles from biomass burnng in Brazil. J. Geophys. Res. 103, 32, 107-18.

  33. Finlayson-Pitts B. J. and Pitts, Jr. J. N. (1999) Chemistry of the Upper and Lower Atmosphere. Academic Press, San Diego.

  34. Finucane, E.W. (Ed) (1998) Definitions, conversions and calculations for occupational safety and health professionals. Chapter 7: Ionizing & Non-ionizing Radiation 2nd ed. CRC Press LLC.

  35. Framton M. W., Morrow P. E., Cox C., Gibb F. R., Speers D. M., and Utell M. J. (1991) Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans, Am. Rev. Respir. Disord.. 143, 522-7.

  36. Garrec, J.P. and El Ayeb, N. (2001) Il problema degli aerosol marini inquinati in Francia e in Tunisia, Linea Ecologica, 33: 51-54.

  37. Gold D. R. (1992) Indoor air pollution. Clin. Chest Med. 13, 215-229.

  38. Goldstein I. F., Andrews L. R., and Hartel D. (1988) Assessment of human exposure to nitrogen dioxide, carbon monoxide, and respirable particles in New York inner-city residences, Atmos. Environ. 22, 2127-39.

  39. Hammond, P.B. & Bililes, R.P., in J. Doull, C.D. Klaassen and M.O. Amdur, eds. (1980) Casarett and Doull’s Toxicology, 2nd edition, Macmillan Publishing Corp., New York, pp. 409-467.

  40. Harrison, R.M. (1999) Understanding Our Environment, Redwood Books Limited, Trowbridge.

  41. Hastings, L., in L.W. Chang and R.S. Dyer, eds. (1995) Handbook of Neurotoxicology, Marcel Dekker, Inc., New York, pp. 171-212.

  42. Hass, B.S., McDaniel, L.P. & Littlefield, N.S. (1996) Ann. Clin. Lab. Sci., 26, 18-30.

  43. Hering S. V. and Friedlander S. K. (1982) Origins of aerosol sulphur size distributions in the Los Angeles Basin, Atmos. Environ. 16, 2647-56.

  44. http://chrom.tutms.tut.ac.jp/JINNO/DATABASE/00alphabet.html

  45. http://www.connex.ro

  46. http://www.epa.gov/radiation/radionuclides/

  47. http://www.epa.gov/ttn/atw/hlthef/butadien.html

  48. http://www.epa.gov/ttn/atw/hlthef/formalde.html

  49. http://www.epa.gov/ttn/atw/hlthef/formalde.html

  50. http://www.epa.gov/ttn/atw/hlthef/toluene.html

  51. http://www.jmarcano.com/nociones/fresh1.html

  52. http://www.romtelecom.ro/

  53. http://www.wellowner.org/awaterquality/radionuclides.shtml

  54. http://www.visionlearning.com/library/

  55. Islam M. S. and Ulmer W. T. (1979) Threshold concentrations of SO2 for patients with oversensitivity of the bronchial system, Wissenschaft and Umwelt 1, 41-7.

  56. Jacobson M. Z. (1997) Development and application of a new air pollution modelling system. Part II: Aerosol module structure and design, Atmos. Environ., 31, 131-44.

  57. Jacobson M. Z. (2002) Atmospheric Pollution. History, Science and Regulation, pp 397, Cambridge University Press, United Kingdom.

  58. John W., Wall S. M., Ondo J. L., and Winkimayr W. (1989) Acidic aerosol size distributions during SCAQS. Final Report for the California Air Resources Board under Contract No. A6-112-32.

  59. Jones A. P. (1999) Indoor air quality and health, Atmos. Environ., 33, 4535-64.

  60. Jones P. D. and Keigwin L. D. (1988) Evidence from Fram Strait (78°N) for early deglaciation.

  61. Kasprzak, K.S., Waalkes, M.P. & Poirier, L.A. (1987) Trace Element Res., 21, 253-273.

  62. Keeling C. D. and Whorf T. P. (2000) Atmospheric CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii. http://cdiac.esd.oml.gov/ftp/maunaloa-co2/maunaloa.co2.

  63. Koester, C.J., Simonich, S.L., Esser, B.K. (2003) Anal. Chem., 75, 2813-2819.

  64. Kontush, A., Meyer, S., Finckh, B. et al. (1996) J. Bio. Chem., 271, pp 11106-11112.

  65. Kovarik B. (1998) Henry Pord, Charles Kettering and the "Fuel of the Future." http://www.runet.edu/~wkovarik/papers/fuel.html.

  66. Kovarik B. (1999) Charles F. Kettering and the 1921 discovery of tetraethyl lead in the context of technological alternatives. http://www.runet.edu/~wkovarik/papers/kettering.html.

  67. Leaderer B. P, Stowe M., Li R., Sullivan J., Koutrakis P, Wolfson M., and Wiison W. (1993) Residential levels of particle and vapour phase acid associated with combustion sources. Proc. Sixth Intemat. Conf. Indoor Air Qual. Clim. Helsinki, Finland, pp. 147-52.

  68. Leaderer B. P., Stolwijk J. A. J., Zagraniski R. T., and Qing-Shan M. (1984) A field study of indoor air contaminant levels associated with unvented combustion sources. Proc. 77th Ann. Meet. Air Pollut. Cont. Assoc. San Francisco, CA.

  69. Lide D. R., ed. (1998) CRC Handbook of Chemistry and Physic, CRC Press, Inc., Boca Raton, FLA.

  70. Liu, D.H.F., Liptak, B.G. (Eds) (1999) Environmental Engineers’ Handbook, Second Edition, CRC Press LLC.

  71. LiY., Powers T. E., and Roth H. D. (1994) Random effects linear regression meta-analysis models with application to nitrogen dioxide health effects studies, J. Air Waste Manag. Assn.., 44, 261-70.

  72. Lukiw, W.J. & McLachlan, D.R., in L.W. Chang and R. S. Dyer, eds. (1995) Handbook of Neurotoxicology, Marcel Dekker, Inc., New York, pp. 105-142.

  73. Manahan, S.E. (2000) Environmental Chemistry, Seventh Edition, Boca Raton: CRC Press LLC.

  74. Manahan, S.E. (2001) Fundamentals of Environmental Chemistry, Boca Raton: CRC Press LLC.

  75. Maroni M. B., Seifert X. X., and Lindvall T. (1995) Indoor Air Quality -A Comprehensive Reference Book. eds. Elsevier, Amsterdam.

  76. Mauna Loa Data Center (2001) Data for atmospheric trace gases, http://mloserv.mlo.hawaii.gov/.

  77. Meyers, R.A. and Dittrich, D.K. (1999) Encyclopedia of Environmental Pollution and Cleanup, Volume 2, John Wiley and Sons, Inc., New York.

  78. Midgley Jr., T. (August 1925) Tetraethyl lead poison hazards. Indust. Eng. Chem., 17 (8), 827.

  79. Millán M.M., Artíñano B., Alonso L., Castro M., Fernandez-Patier R. & Goberna J. (1992) Meso-meteorological Cycles of Air Pollution in the Iberian Peninsula, (MECAPIP). Air Pollution Research Report 44, (EUR Nº 14834) CEC-DG XII/E-1, Rue de la Loi, 200, B-1040, Brussels.

  80. Millan M.M., Sanz M.J. (1993) La contaminación atmosférica en la Comunidad Valenciana: Estado de conocimiento sobre los problemas en El Maestrazgo y Els Ports. Informes CEAM 93-1. Depósito Legal: V-1020-1993.

  81. Millán M.M., Salvador R., Mantilla E., & Kallos G. (1997) Photo-oxidant Dynamics in the Western Mediterranean in Summer: Results from European Research Projects, J. Geophys. Res., 102, no. D7, 8811-8823.

  82. Millán M.M., Mantilla, E., Salvador, R., Carratalá, A., Sanz, M.J., Alonso, L., Gangoiti, G., Navazo, M. (2000) Ozone cycles in the Western Mediterranean Basin: Interpretation of monitoring data in complex coastal terrain, J. Appl. Meteor., 39, 487-508.

  83. Millán, M. M., Sanz, M.J., Salvador, R. & Mantilla, E. (2002) Atmospheric dynamics and ozone cycles related to nitrogen deposition in the western Mediterranean., Environmental Pollution, 118, 167-186.

  84. Moore, G.S. (1999)
1   ...   7   8   9   10   11   12   13   14   15

Похожие:

I organic air pollutants I 1 Volatile Organic Compounds (vocs) iconOxygenated volatile organic chemicals in the oceans: inferences and implications based on atmospheric observations and air-sea exchange models

I organic air pollutants I 1 Volatile Organic Compounds (vocs) iconA. Organic chemistry is the study of carbon compounds

I organic air pollutants I 1 Volatile Organic Compounds (vocs) iconChem 6v39: Organic Electronics (Special Topics in Organic Chemistry)

I organic air pollutants I 1 Volatile Organic Compounds (vocs) icon11/13/2007 -the following are letters written by organic consumers in response to his comments that buying organic and local is dumb. Collin Peterson, chairman

I organic air pollutants I 1 Volatile Organic Compounds (vocs) iconUpdated general technical guidelines for the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants (pops)

I organic air pollutants I 1 Volatile Organic Compounds (vocs) icon* Ecology Ecotoxicology Aquatic Toxicology Environmental analytical chemistry of organic compounds Environmental Chemistry (Fates of trace substances in aquatic ecosystems) *

I organic air pollutants I 1 Volatile Organic Compounds (vocs) icon教科書為Advanced Organic Chemistry: Part B: Reaction and Synthesis (Advanced Organic Chemistry / Part B: Reactions and Synthesis)

I organic air pollutants I 1 Volatile Organic Compounds (vocs) iconNational Emission Standards for Hazardous Air Pollutants from the

I organic air pollutants I 1 Volatile Organic Compounds (vocs) iconVariability of bulk organic δ

I organic air pollutants I 1 Volatile Organic Compounds (vocs) iconPrinciples of inorganic and organic chemistry

Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница