Образовательная программа по предмету алгебра




НазваниеОбразовательная программа по предмету алгебра
страница1/5
Дата19.09.2012
Размер0.58 Mb.
ТипОбразовательная программа
  1   2   3   4   5
МОУ “Мелекесская средняя общеобразовательная школа

с углубленным изучением английского языка”

Тукаевского района Республики Татарстан



УТВЕРЖДЕНО

протоколом педсовета

от___ ________2009 г. №_____

Директор школы

____________С.Х.Шагалиева

Введено приказом № ________ от___ ___________2009 г.



ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА


ПО ПРЕДМЕТУ алгебра


ДЛЯ 7 КЛАССА (количество часов в неделю в 1 четверть-5ч.,

2,3,4 четверть-3 ч, , в год-120 ч.)


­­­­­­­­­­­­­­Составитель: Липатова Зубарзят Масгутовна (математика, первая кв. категория)


СОГЛАСОВАНО

Зам. Директора ___________ Иванова Ч.В.


РАССМОТРЕНО

на заседании ШМО, протокол от ____ _____________ 2009 г. № ___________

Руководитель ШМО ____________ Ахметвалеева М.С.


село Мелекес

2009




Рабочая программа учебного курса по алгебре для 7-го класса.

Пояснительная записка

Рабочая программа составлена с учётом примерной программы основного общего образования по математике и скорректирована на её основе программа: «Алгебра 7» авторы Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова.

Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Алгебра нацелена на формирование математического аппарата для решения задач из математики и смежных предметов (физика, химия, основы информатики и вычислительной техники и др.).

В задачи обучения математики входит:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;

  • овладение навыками дедуктивных рассуждений;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, необходимой, в частности, для освоения курса информатики;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и т.д.);

  • воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;

  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

Курс алгебры построен в соответствии с традиционными содержательно-методическими линиями: числовой, функциональной, алгоритмической, уравнений и неравенств, алгебраических преобразований. В курсе алгебры 7-го класса продолжается систематизация сведений о преобразовании выражений и решении уравнений с одним неизвестным. Специальное внимание уделяется новым вопросам: употреблению знаков или , записи и чтению двойных неравенств, понятиям тождества, тождественного преобразования, линейного уравнения с одним неизвестным, равносильных уравнений. Формируется понятие функции, что является начальным этапом в обеспечении систематической функциональной подготовки учащихся. Продолжается изучение степени с натуральным показателем. Изучаются свойства функций и , и особенности расположения их графиков в координатной плоскости. Главное место занимают алгоритмы действий с многочленами – сложение, вычитание и умножение. Особое внимание уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Вырабатываются умения применять формулы сокращенного умножения как для преобразования произведения в многочлен, так и для разложения на множители. Даются первые знания по решению систем линейных уравнений с двумя переменными, что позволяет значительно расширить круг текстовых задач. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Программой отводится на изучение алгебры в I четверти по 5 уроков в неделю, во II, III, IV четвертях по 3 часа в неделю, что составляет 125 часов в учебный год. Из них контрольных работ 10 часов, которые распределены по разделам следующим образом: «Выражения, тождества, уравнения» 2 часа, «Функции» 1 час, «Степень с натуральным показателем» 1 час, «Многочлены» 2 часа, «Формулы сокращенного умножения» 2 часа, «Системы линейных уравнений» 1 час и 1 час отведен на итоговую административную контрольную работу.

Для более широкого знакомства с математикой введен курс «Элементы статистики и теории вероятностей» в количестве 5 часов. На этом этапе продолжается решение задач путем перебора возможных вариантов, изучается статистический подход к понятию вероятности. Дается классическое определение вероятности, формируются умения вычислять вероятности с помощью формул комбинаторики. Особое внимание уделяется правилу сложения вероятностей.

Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.

Количество часов по темам изменено в связи со сложностью тем.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Домашнее задание описано на блок уроков. По ходу работы, в зависимости от темпа прохождение материала номера заданий распределяются по урокам так, что по окончании изучения блока все задания выполнены учащимися в обязательном порядке.

Для развития устойчивого интереса к учебному процессу, уроки математики интегрируются с уроками информатики. Некоторые разделы алгебры закрепляются посредством тестов на ПК, которые разработали сами учащиеся. Для этого используется пакет прикладных программ Microsoft Office и УМК Живая математика – это компьютерная система моделирования, исследования и анализа широкого круга задач математики. Программа Живая Математика помогает конструировать интерактивные математические модели, давая начальные представления о понятиях формы тела, числах и т.п. Живая Математика помогает поставить мысленный эксперимент вида "что если?".

СОДЕРЖАНИЕ ОБУЧЕНИЯ

1. Выражения, тождества, уравнения

Числовые выражения с переменными. Простейшие преобразо­вания выражений. Уравнение, корень уравнения. Линейное урав­нение с одной переменной. Решение текстовых задач методом со­ставления уравнений. Статистические характеристики.

Основная цель — систематизировать и обобщить сведе­ния о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном меж­ду курсом математики 5—6 классов и курсом алгебры. В ней за­крепляются вычислительные навыки, систематизируются и обоб­щаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений да­ет возможность повторить с учащимися правила действий с ра­циональными числами. Умения выполнять арифметические дей­ствия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторе­ние с целью ликвидации выявленных пробелов. Развитию навы­ков вычислений должно уделяться серьезное внимание и в даль­нейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выра­жений расширяются сведения о неравенствах: вводятся знаки > и <, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводят­ся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание кото­рых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчер­кивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащи­мися алгоритмов решения уравнений вводится вспомогательное

понятие равносильности уравнений, формулируются и разъясня­ются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется реше­нию уравнений вида ах = b при различных значениях а и b. Про­должается работа по формированию у учащихся умения исполь­зовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Изучение темы завершается ознакомлением учащихся с про­стейшими статистическими характеристиками: средним арифме­тическим, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в не­сложных ситуациях.


2. Функции

Функция, область определения функции. Вычисление значе­ний функции по формуле. График функции. Прямая пропорцио­нальность и ее график. Линейная функция и ее график.

Основная цель — ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорцио­нальности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие по­нятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной пе­ременной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значе­ние функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.

Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой про­порциональности. Умения строить и читать графики этих функ­ций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у = kx, где k # 0, как зависит от зна­чений k и Ъ взаимное расположение графиков двух функций вида у = kx + b.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функ­ций сопровождаются рассмотрением примеров реальных зависи­мостей между величинами, что способствует усилению приклад­ной направленности курса алгебры.

3. Степень с натуральным показателем

Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.

Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.

В данной теме дается определение степени с натуральным по­казателем. В курсе математики 6 класса учащиеся уже встреча­лись с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора. Рас­сматриваются свойства степени с натуральным показателем. На примере доказательства свойств ат • ап = ат + п, ат : ап = ат - п, где т > п, (ат)п = атп, (ab)n = апbп учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материа­ле. Указанные свойства степени с натуральным показателем на­ходят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, со­держащих степени, особое внимание следует обратить на порядок действий.

Рассмотрение функций у = х2, у = х3 позволяет продолжить работу по формированию умений строить и читать графики функ­ций. Важно обратить внимание учащихся на особенности графи­ка функции у = х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

Умение строить графики функций у = х2 и у = х3 использует­ся для ознакомления учащихся с графическим способом решения уравнений.

4. Многочлены

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

Основная цель — выработать умение выполнять сложе­ние, вычитание, умножение многочленов и разложение много­членов на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное ме­сто в этой теме занимают алгоритмы действий с многочлена­ми — сложение, вычитание и умножение. Учащиеся должны по­нимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вы­читания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. По­этому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению мно­гочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преоб­разования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональ­ными дробями.

В данной теме учащиеся встречаются с примерами использо­вания рассматриваемых преобразований при решении разнооб­разных задач, в частности при решении уравнений. Это позволя­ет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются неслож­ные задания на доказательство тождества.

5. Формулы сокращенного умножения

Формулы (а ± b)2 = а2± 2ab + b2, (а ± b)3 = а3 ± За2b + Заb2 ± b3, ± b) 2 + аb + b2) = а3 ± b3. Применение формул сокращенного умножения в преобразованиях выражений.

Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у уча­щихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b) (а + b) = а2 - b2, (а ± b)2 = а2 ± 2аb + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».

Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± За2b + Заb2 ± b3, а3 ± b3 =

(а ± b) 2 + аb + b2). Одна­ко они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использо­вание.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для ре­шения широкого круга задач.

6. Системы линейных уравнений

Система уравнений. Решение системы двух линейных урав­нений с двумя переменными и его геометрическая интерпрета­ция. Решение текстовых задач методом составления систем урав­нений.

Основная цель — ознакомить учащихся со способом ре­шения систем линейных уравнений с двумя переменными, выра­ботать умение решать системы уравнений и применять их при ре­шении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматри­ваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравне­ние с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя пе­ременными в целых числах.

Формируется умение строить график уравнения а + by = с, где а # 0 или b # 0, при различных значениях а, b, с. Введение гра­фических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя пе­ременными.

Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает про­цесс перевода данных задачи с обычного языка на язык уравнений.

7. Повторение


ПРИМЕРНОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО МАТЕРИАЛА

I вариант: 5 ч в неделю в I четверти, 3 ч в неделю во II—
IV четвертях, всего 120 ч

II вариант: 4 ч в неделю, всего 136 ч

Номер пара­графа

Содержание материала

Количество часов

I вариант

II вариант

Глава I. Выражения, тождества, уравнения

20+4

26

1

2


3

4

Выражения

Преобразование выражений

Контрольная работа № 1

Уравнения с одной переменной

Статистические характеристики

Контрольная работа № 2z

5

5

1

8

4

1

5

6

1

9

4

1

Глава II. Функции

14

18

5

6

Функции и их графики

Линейная функция

Контрольная работа № 3

6

7

1

7

10

1

Глава III. Степень с натуральным показателем

14

18

7

8

Степень и ее свойства

Одночлены

Контрольная работа № 4

7

6

1

10

7

1

Глава. IV. Многочлены

20

23

9

10


11

Сумма и разность многочленов

Произведение одночлена и много­члена

Контрольная работа № 5

Произведение многочленов

Контрольная работа № 6

4

6

1

8

1

4

7

1

10

1

Глава V. Формулы сокращенного умножения

20

23

12

13


14

Квадрат суммы и квадрат разности

Разность квадратов. Сумма и раз­ность кубов

Контрольная работа № 7

Преобразование целых выражений

Контрольная работа № 8

5

5

1

8

1

6

6

1

9

1

Глава VI. Системы линейных уравнений

16

17

15


16

Линейные уравнения с двумя пере­менными и их системы

Решение систем линейных уравнений

Контрольная работа № 9


6

19

1


6

10

1

Повторение

12

11

Итоговый зачет

Итоговая контрольная работа

1

1

1

1



УТВЕРЖДАЮ

Директор школы

___________ Шагалиева С.Х.

подпись


Календарно-тематический план

Липатовой З.М.

учителя математики на 2009/2010 учебный год

План составлен согласно Примерной программы общеобразовательных учреждений .Алгебра 7-9 классы. Издательство «Просвещение», 2008 г.(составитель: Т.А. Бурмистрова).


Предмет

Класс

Всего кол-во часов

Кол-во часов в неделю

Количество
















контрольных работ

зачетов

тестовых заданий

лабораторных, практических работ

демонстрация

Автор учебника, год издания

Алгебра

7

120

2

10

-

8

-

-

Ю.Н.Макарычев2004


Методическая тема на 2009/2010 учебный год


Районная

Школьная

Учителя




Личностно-ориентированное обучение и воспитание учащихся

Индивидуализация обучения при изучении математики.
  1   2   3   4   5

Похожие:

Образовательная программа по предмету алгебра iconРабочая программа по учебному предмету «Алгебра» (углубленный уровень)
Ю. Н. Макарычева, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. Алгебра. – М.: Мнемозина, 2010
Образовательная программа по предмету алгебра iconРабочая программа по предмету алгебра
Рабочая программа составлена с учётом примерной программы основного общего образования по математике и скорректирована на её основе...
Образовательная программа по предмету алгебра iconПрограмма По предмету «Алгебра» Для 8 «б» класса
Рабочая программа составлена на основе учебника «Алгебра», для 8 класса общеобразовательных учреждений, Ю. Н. Макарычев. – М.: Просвещение,...
Образовательная программа по предмету алгебра iconПрограмма умк по предмету Вид
Программы. Математика. 5 6 классы. Алгебра. 7 – 9 классы. Алгебра и начала математического анализа. 10 – 11 классы./ состав. Зубарева...
Образовательная программа по предмету алгебра iconУчебно-методический комплекс по учебному предмету «Алгебра»
Программы для общеобразовательных учреждений. Алгебра 7 -9 классы. Москва. Просвещение 2008
Образовательная программа по предмету алгебра iconОбразовательная программа по предмету математика
«Алгебра и начала математического анализа и геометрии 10-11 классы», составитель Т. А. Бурмистрова -м.: Просвещение, 2008г в соответствии...
Образовательная программа по предмету алгебра iconУчебно-методический комплекс по учебному предмету «Алгебра и начала анализа»
Программы математика 5- 6 класс алгебра 7-9 классы, алгебра и начала анализа 10 – 11 классы. А. Г мордкович
Образовательная программа по предмету алгебра iconПрограмма дисциплины«Геометрия и алгебра (линейная алгебра)»
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления 080500. 62 «Бизнес-информатика»,...
Образовательная программа по предмету алгебра iconПрограмма дисциплины«Геометрия и алгебра (линейная алгебра)»
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления 010400. 62 «Прикладная...
Образовательная программа по предмету алгебра iconКомплект электронных образовательных ресурсов к уроку по предмету
Программа/учебник, к которым составлен комплект – Макарычев Ю. Н., Миндюк Н. Г., Нешков К. И. и др. «Алгебра 7»
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница