Скачать 1.32 Mb.
|
АНТЕННАЯ МОДЕЛЬ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФОРМАЛИЗМ [16] Как уже неоднократно отмечалось, функционирование ряда биологических макромолекул (в частности, ферментов) и других биологических соединений во многом определяется процессами, происходящими в активных центрах, окруженных биополимерными цепочками, имеющими знаковую топологию. Исходя из такого представления о структуре информационных биомакромолекул, естественно предположить, что их взаимодействие с физическими полями внешних по отношению к биосистеме и внутренних (организменных) излучений приводит к возбуждению дипольно-активных колебаний мономеров, формирующих указанную цепочку, а те, в свою очередь, индуцируют колебания в активном центре. Иными словами, такая система будет работать как своеобразная антенна. Эти возбужденные колебания способны привести к переходу биомакромолекулы в другое конформационное (топологическое, знаковое) состояние. Подобная концепция в принципиальном плане адекватна целому ряду функционально высокозначимых биомакромолекул, например, хлорофилла, гемоглобина, миоглобина и т. д. Эти макромолекулы объединяются двумя структурными качествами: 1) в их геометрическом центре расположен ион (в случае хлорофилла ион магния, в случае гемоглобина ион железа); 2) около иона симметрично расположены 4 пиррольных кольца (псевдоплоская структура). Другими типами биополимеров, соответствующих антенной модели, могут быть cравнительно простые циклы типа валиномицина (переносчик ионов калия) и сложные надмолекулярные структуры хромосом, ДНК которых содержит высокоорганизованные ассоциаты таких металлов, как магний, кальций, никель, кобальт, медь, железо, цинк и др. При этом роль их неясна и сводится исследователями, в основном, к нейтрализации ОН-групп остатков фосфорной кислоты полинуклеотида. Представляется, что функции металлов в ДНК и РНК существенно более широкие и реализуются по линии знакового и (или) энергетического взаимодействия с эндогенными и экзогенными по отношению к биосистеме физическими полями. То же относится и к белкам, не содержащим порфириновый центр, но специфическим образом связывающим металлы. Например, таковыми можно считать сайт-специфические белки с доменами типа “цинковых пальцев”, участвующими в регуляции генов, подчас очень далеко отстоящих от этих управляющих белков. Атомы металлов ДНК и белков могут резонансно взаимодействовать по электромагнитным каналам в рамках понятий антенной модели. Еще раз обозначим понятие антенной модели. Внешняя энергия (в частности, связанная с резонансным взаимодействием крайне высокочастотных электромагнитных излучений с белками) поступает на периферию, т. е. на ансамбль субъединиц (не обязательно идентичных по структуре). В результате активной “беседы”, предопределенной биохимическими связями, между периферийными акцепторами (получившими закодированную энергию) и центром-ассоциатом (в данном случае ионом металла гемсодержащих белков), последний получает энергию (информацию), что и вызывает биологическое действие. Степень реакционной способности биомакромолекул существенно зависит от уровня возбуждения центральных субъединиц. Рассмотрим в деталях потенциальные механизмы волновых взаимодействий физических полей и активных центров информационных биомакромолекул в рамках предлагаемой нами антенной модели. В качестве простейшей модели для иллюстрации антенного эффекта рассмотрим двумерную замкнутую (циклическую) цепочку мономеров. В центре цикла расположен активный центр, связанный с мономерами цепочки диполь-дипольным взаимодействием. Обозначим координатные смещения мономеров через ![]() ![]() ![]() Первые два члена в (1) соответствуют колебаниям мономеров (второй член учитывает ангармонизм); последние два члена отвечают за связи между мономерами, Остальные члены отвечают за связи между мономерами и активным центром. Уравнения движения запишем в виде: ![]() где ![]() ![]() С учетом (1), система уравнений (2) приобретает вид: ![]() ![]() Введем общую координату для ансамбля мономеров ![]() тогда система уравнений (4) в линейном приближении приобретает вид: ![]() где: ![]() ![]() С учетом (5) имеем ![]() ![]() Из (7.2) следует ![]() Подстановка (8) в (7.1) дает ![]() (9) Соответствующее характеристическое уравнение имеет вид (после подстановки ![]() ![]() Обозначив ![]() ![]() так что ![]() В дальнейшем предполагается выполнение неравенств: ![]() Первое условие соответствует случаю слабой связи между мономерами и активным центром, второе малому затуханию мономерных осцилляторов. Для собственных значений имеем ![]() где введены коллективные частоты: ![]() Нас интересуют вынужденные колебания (внешняя сила ![]() ![]() Подстановка (15) в (9) и приравнивание соответствующих коэффициентов при ![]() ![]() ![]() где: ![]() В результате получаем ![]() где ![]() После несложных, но громоздких преобразований для вынужденных колебаний активного центра получаем: ![]() Из (16) видно, что наибольшая амплитуда вынужденных колебаний активного центра достигается в условиях коллективного резонанса: либо ![]() ![]() В любом из этих случаев для амплитуды вынужденных колебаний имеем: ![]() Из (17) следует, что наибольший эффект резонансной раскачки активного центра достигается при большем числе периферийных субъединиц “антенны”, при более высоком значении коэффициента связи активного центра с мономерами, при наименьшем коэффициенте затухания и при наименьшем дисбалансе коллективных мод. Нетрудно определить и “хореографию” (динамику вынужденных колебаний) отдельных мономерных единиц. В соответствии с (6) уравнение для k -го мономера запишем в виде: ![]() Вводя коллективные координаты ![]() и применяя метод линейной алгебры, получаем для вынужденных колебаний мономеров: ![]() (19) где: ![]() ![]() Таким образом, в рамках антенной модели наибольший эффект воздействия внешнего монохроматического поля ![]() ![]() Повторяя рассуждения раздела 2, можно сделать также следующие выводы: 1) При реализации амплитудной модуляции внешнего сигнала имеют место дополнительные возможности резонансного воздействия на биомакромолекулы на частотах: ![]() 2) Учет нелинейности при квадратичной связи для монохроматического сигнала привносит дополнительный резонанс на второй гармонике ![]() 3) Учет нелинейности при амплитудной модуляции определяет еще ряд резонансных возможностей: ![]() Таким образом, при действии резонансного электромагнитного поля на биомакромолекулы с активным центром, содержащим атомы металлов, существенную роль играют коллективные волновые эффекты. В этом случае свойства самого излучения предопределяют широкие возможности регуляторного влияния на динамику биомакромолекул в целом и, следовательно, на биопроцессы, в которых они принимают участие, тем самым прямо или косвенно реализуя управляющие и (или) дезорганизующие сигналы. КОНВЕРСИЯ ЭПИГЕНОСИГНАЛОВ В ЭЛЕКТРОМАГНИТНЫХ СОЛИТОННЫХ СТРУКТУРАХ, ИХ ТРАНСПОЗИЦИЯ В ГЕНОМ БИОСИСТЕМ-АКЦЕПТОРОВ Детально методы и эксперименты по дистантной трансляции и биологической активности электромагнитных солитонов, синтезированных на основе явления возврата Ферми-Паста-Улама (ФПУ) и промодулированных эпигеносигналами, приведены в работе автора [25]. Здесь же отметим принципиальные позиции, разграничивающие прежние представления о работе генов как чисто вещественных образований и наших представлений о знаковых волновых излучениях (“волновых генах”) хромосомного континуума. Реальные и достоверные эксперименты в области волновой генетики первым начал проводить Дзян Каньджэн. Итоговые работы его известны [Дзян Каньджэн. 1993. Биоэлектромагнитное поле материальный носитель биогенетической информации. Аура-Z. № 3. с.4254. Патент №1828665 “Способ изменения наследственных признаков биологического объекта и устройство для направленной передачи биологической информации”. заявка № 3434801. приоритет изобретения 30.12.1981г., зарегистрировано 13.10.1992г.]. Прибор Дзян Каньджэна, дистантно (десятки сантиметров) передающий “волновые гены” от донора к реципиенту, использует собственные излучения биосистем-доноров, причем, как считает автор, только в СВЧ-дипазоне электромагнитных полей. Авторское теоретическое обоснование эффектов, полученных с помощью этой аппаратуры, откровенно слабо, а точнее, просто неверно. Однако результаты убедительны. Это “волновые” гибриды пшеницы и кукурузы, земляного ореха и подсолнуха, огурца и дыни, утки и курицы, козы и кролика. Полученные гибридами признаки передаются по наследству. Блестящий эмпирик Дзян Каньджэн оказался неспособным понять тонкие механизмы открытых им эффектов, но это нисколько не умаляет значимость результатов, суть которых в доказательстве реальности “волновых генов”. Вслед за этими исследованиями мы, уже своими методами, подтвердили принципиальную возможность дистантной трансляции и акцепции эпигенетических управляющих сигналов in vitroin vivo в форме особого вида электромагнитного поля. Это еще раз подтвердило идеи А.Г. Гурвича, А.А. Любищева и В.Н. Беклемишева, но на современном уровне. Стало ясно, что “волновые гены” могут существовать, в частности, как одна из форм явления возврата ФПУ, что хорошо коррелирует с нашими данными по ФПУ-возврату на уровне нелинейной динамики ДНК in vitro. Именно это фундаментальное явление и легло в основу конструкции генератора ФПУ, приближенно моделирующего знаковые электродинамику и акустику ДНК in vivo и потому способного “считывать” и ретранслировать управляющие метаболизмом биосистем солитонные структуры с хромосомного континуума биосистем-доноров и резонансно вводить их в геном биосистем-акцепторов. В связи с принципильной важностью феномена моделирования ФПУ-процессов в геноме высших биосистем при помощи особых радиоэлектронных устройств (ФПУ-генераторов) имеет смысл остановиться несколько подробнее на феномене ФПУ-возврата. Это явление было обнаружено в 1949 г. как результат компьютерного исследования динамики колебаний в цепочках нелинейно связанных осцилляторов. Оказалось, что против всякого ожидания энергия первоначального возмущения крайних осцилляторов в таких цепочках не термолизовалась, а распределившись по высшим гармоникам, затем вновь собиралась в спектр первоначального возмущения. При увеличении числа осцилляторов в цепочке картина возврата энергии неизменно сохранялась. Эта проблема получила название возврат Ферма-Паста-Улама по именам Э.Ферми, Д.Паста и З.Улама, которые первыми исследовали эту задачу. В дальнейшем возврат ФПУ был экспериментально обнаружен в длинных электрических линиях с нелинейными элементами в плазме, а также в динамике волн на глубокой воде. Замечательным свойством возврата ФПУ оказалось наличие “памяти” в его спектре к начальным условиям его активных мод. Результаты исследований в области изучения возврата ФПУ позволили теоретически рассмотреть молекулу ДНК в виде электрического резонатора ФПУ1. В этой модели динамика волны плотности электронов, распространяющейся вдоль сахаро-фосфатных цепей молекулы ДНК, рассматривалась в рамках нелинейного уравнения Шредингера в форме, предложенной Юэном и Лэйком для описания динамики солитонных волн на глубокой воде. При этом осцилляции плотности электронов в структурах нуклеотидов понимали как возмущающие точечные источники, расположенные на одинаковых расстояниях вдоль сахаро-фосфатных цепочек ДНК, интерпретируемых как длинная электрическая линия. В дальнейшем эта модель была развита А. А. Березиным совместно с автором [25]. В частности, были рассмотрены электрические поля (E', E") обеих цепочек ДНК, где E' средняя амплитуда напряженности электрического поля за один пространственный период стоячих волн в первой цепи ДНК, а E" средняя амплитуда напряженности электрического поля за один временной период стоячих волн во второй цепи. Если принять, что колебания E' и E" генерируются молекулой ДНК в окружающее пространство, тогда вне молекулы ДНК поля E' и E" образуют сферические фронты. При этом в силу представления стоячих волн в молекуле ДНК в виде двух противоположно направленных бегущих фронтов возмущений, от источника (молекулы ДНК) будет расходиться сферическая волна E', а к источнику будет сходиться сферическая волна E", поскольку волны от молекулы излучаются в нелинейную среду внутриклеточную жидкость. Динамика этих волн может быть описана в сферических координатах. Для E" частное решение будет выглядеть аналогично. Было получено выражение, представляющее собой интенсивность электрической волны на сфере определенной толщины вокруг молекулы ДНК, своего рода “сферическая голограмма”, существующая в электролите клеточно-тканевого пространства в сферическом слое. Предложенная модель указывает на возможность существования вокруг молекулы ДНК в составе хромосом сферических акустико-электромагнитных солитонов (бри-зеров), которые интегрально отображают структуру хромосомного континуума и могут двигаться за пределы клеточных ядер или совершать колебательные движения относительно некоего положения равновесия и которые содержат статико-динамические квазиголографические (в общем случае дифракционные) решетки с эпигенознаковой образно-семан-тической нагрузкой. Такие решетки отображают текущее и (или) относительно постоянное пространственно-временное состояние организма в каждой области многомерной структуры высших биосистем, где в данный момент находится бризер. Наличие тепловых возмущений (kT) молекулы ДНК, а также возможность существования фуранозных колец нуклеотидов в виде двух конформаций, приводят к усложнению модели и необходимости введения в нее фазовых флуктуаций электронной плотности. Однако, учитывая, что спектр ФПУ может служить преобразователем стохастических колебаний в детерминированные, стохастическая компонента динамики колебаний электронной плотности в молекуле ДНК является, вероятно, ее атрибутом. |
![]() | Российской Академии Наук П. П. Гаряев волновой генетический код удк 575. 17 Предлагаемая работа “Волновой генетический код” написана через три года после выхода моей монографии “Волновой геном” и, несмотря... | ![]() | Тема урока: Биосинтез белков. Понятие о гене. Днк источник генетической информации. Генетический код Тема урока: Биосинтез белков. Понятие о гене. Днк – источник генетической информации. Генетический код, раздел «Органическая химия... |
![]() | Программа вступительного экзамена в аспирантуру ициГ по специальности Основная догма молекулярной генетики. Матричный принцип. Процессы репликации, транскрипции, трансляции. Генетический код | ![]() | Задача оптимальной упаковки; комбинированный алгоритм; волновой алгоритм; ресурсная эффективность Комбинированный и волновой алгоритмы решения задачи упаковки: принципы построения и особенности |
![]() | Нии эдито (в составе онц рамн) Дейчман А. М. “Генетический код: взаимодействие аминокислот белков (фрагментов, пептидов) в соответствии с различными правилами,... | ![]() | Бюллетень новых поступлений за май 2007 года Генетический код : от теории эволюции до расшифровки ДНК / А. Азимов; [пер с англ. Д. А. Лихачева]. М. Центрполиграф, 2006. 202 с.... |
![]() | Пластический обмен. Биосинтез белка «обмен веществ», «пластический обмен», «энергетический обмен», «триплет», «генетический код», «комплементарность» | ![]() | Элективный курс Предмет: Биология Тема: «Прикладная генетика» «Золотой век». За время, прошедшее от открытия структуры ДНК в 1953 г до появившейся не так давно возможности расшифровать генетический... |
![]() | Генетический поиск свойств вещественно-полевых ресурсов Ключевые слова: базис Бартини, тренды ресурсов, генетический алгоритм, селекция свойств икс-элемента | ![]() | Министерство образования и науки российской федерации Информационные процессы в клетке: репликация, транскрипция, трансляция, (репарация, сплайсинг). Генетический код. Классические опыты... |