Гаряев П. П. – Волновой генетический код




НазваниеГаряев П. П. – Волновой генетический код
страница4/11
Дата16.09.2012
Размер1.32 Mb.
ТипДокументы
1   2   3   4   5   6   7   8   9   10   11

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

СОЛИТОНОВ НА ДНК

Марио Салерно первым начал компьютерное экспериментирование с солитонами на ДНК не только как с формальными математическими структурами, он попытался связать их поведение в одномерном прост-ранстве полинуклеотидов с их биогенетическими, а точнее, с эпиге-нетическими функциями1. При этом он развил первую модель солитонов на ДНК, предложенную Инглендером и соавторами2. Эта модель и в последующем ее более детальные формы, включая нашу (см. ниже), представлена в понятиях механических систем как цепочка осцилляторов (оснований ДНК), связанных упругими нелинейными сахаро-фосфатными связями. Вслед за Салерно основное внимание мы уделили реально существующим известным последовательностям ДНК и влиянию их на характер поведения солитонов. На первом этапе мы повторили его эксперименты, но на существенно более длинных отрезках ДНК. Действительно, солитонные возбуждения типа кинков чувствительны к месту своей инициации, и продвижение их вдоль одной из цепочек ДНК, когда они раскрыты вследствие тепловых флуктуаций, сопровождается специфической модуляцией траектории кинков во времени. Такие солитоны являются структурами, излучающими электромагнитное и акустическое поле, их внутренняя колебательная структура способна отобразить и ретранслировать тексты и иные знаковые структуры ДНК во внутри- и внеклеточное пространство, по крайней мере на уровне крупных блоков последовательностей. В качестве примера можно привести поведение кинка на фрагменте ДНК длиной 1020 пар оснований из вируса саркомы птиц.

C-район ДНК (1 1020 нуклеотид) на 3’-конце вируса саркомы птиц. Содержит несколько “семантически” определенных участков, таких, как полипептид-кодирующий участок (между 558 и 675 нуклеотидами); PolA (936)  3’-конец вирусной РНК, сайт поли-аденилирования; 916 нуклеотид  5’-конец вирусной РНК (“capping site”); Red-участок ()  короткий концевой повтор вирусного генома; Pro  вероятный компонент промотора транскрипции (между 870 и 900); палиндром-”шпилька” (870 912)3.


(5’ начало) GGC CTA TGT GGA GAG GAT GAA CTA CGT GCA CCG AGA CCT GCG GGC GGC CAA CAT CCT GGT GGG GGA GAA CCT GGT GTG CAA GGT GGC TGA CTT TGG GCT GGC ACG CCT CAT CGA GGA CAA CGA GTA CAC AGC ACG GCA AGG TGC AAG TTC CCC ATC AAG TGG AGA GCC CCC GAG GCA GCC CTC TAT GGC CGG TTC ACC ATC AAG TCG GAT GTC TGG TCC TTC GGC ATC CTG CTG ACT GAG CTG ACC ACC AAG GGC CGG GTG CCA TAC CCA GGG ATG GGC AAC GGG GAG GTG CTG GAC CGG GTG GAG AGG GGC TAC CGC ATG CCC TGC CCG CCC GAG TGC CCC GAG TCG CTG CAT GAC CTT ATG TGC CAG TGC TGG CGG AGG GAC CCT GGA GGA GCG GCC CAC TTT TCG AGC TAC CTG CAG GCC CAG CTG CTC CCT GCT TGT GTG TTG GAG GTC GCT GAG TAG TGC GCG AGT AAA ATT TAA GCT ACA ACA AGG CAA GGC TTG ACC GAC AAT TGC ATG AAG AAT CTG CTT AGG GTT AGG CGT TTT GCG CTG CTT CGC GAT GTA CGGGCC AGA TAT ACG CGT ATC TGA GGG GAC TAG GGT GTG TTT AGG CGA AAA GCG GGG CTT CGG TTG TAC GCG GTT AGG AGT CCC CTC AGG ATA TAG TAG TTT CGC TTT TGC ATA GGG AGG GGG AAA TGT AGT CTT ATG CAA TAC TCT TGT AGT CTT GCA ACA TGG TAA CGA TGA GTT AGC AAC ATA CCT TAC AAG GAG AGA AAA AGC ACC GTG CAT GCC GAT TGG TGG AAG TAA GGT GTA CGA TCG TGC CTT ATT AGG AAG GCA ACA GAC CGG GTC TGA CAT GGA TTG GAC GAA CCA CTG AAT TCC GCA TCG CAG AGA TAT TGT ATT TAA GTG CCT AGC TCG ATA CAA TAA ACG CCA TTT GAC CAT TCA CCA CAT TGG TGT GCA CCT GGG TTG ATG GCT GGA CCG TCG ATT CCC TAA CGA TTG CGA ACA CCT GAA TGA AGC AGA AGG CTT CATT 1020 (3’-конец)


На рис.1 и рис. 2 кинки имеют форму пиков “горных гряд”, а не ступенек, поскольку взята производная от функции уравнения синусГордона. Здесь горизонтальная ось  последовательность ДНК, верти-кальная  амплитуда солитона. Ось на зрителя  время. Видно, как при изменении места инициации солитона на определенных последо-вательностях полинуклеотида заметно меняется динамика этой уеди-ненной волны в форме ее колебательных движений вдоль цепочки ДНК.

Исследуемый район молекулы богат функционально (и семантически) биологически значимыми участками, и мы вправе ожидать, что они, эти участки, будут изменять, модулировать, то есть вводить ДНК “текстовую” информацию в солитонную волну как в переносчик генетических сообщений. Такая модуляция колебательной структуры солитонов отчетливо наблюдается на приведенных графиках. Можно полагать, что спектральный состав частот колебаний солитонов является одним из механизмов преобразования текстовых структур ДНК и РНК в волновую форму и средством передачи генетических и иных сообщений в одномерном пространстве вдоль цепочек полинуклеотидов и (или) в трехмерном измерении генома как отдельной клетки, так и тканевого континуума биосистемы.



400-ый

Рис.1

Влияние нуклеотидной последовательности ДНК на динамику конфор-мационного возмущения уединенной (солитоноподобной ) волны. Последо-вательность нуклеотидов вирус саркомы птиц (первые 600 пар оснований). Центр возмущения 400-ый нуклеотид.



450-ый

Рис.2

То же, что на рис.1, но центр возмущения цепочки ДНК на 450-ом нуклеотиде.


Так работает компьютерная модель динамики солитонов, в определенной мере развитая Салерно после ее выдвижения Инглендером. Салерно дал формализм, описывающий вращательные колебания нуклеотидов молекулы ДНК, для того чтобы объяснить экспериментальные данные по водородно-тритиевому обмену в ДНК. Согласно этой модели по Инглендеру, в цепи ДНК могут возникать (под воздействием теплового шума) и распространяться открытые состояния (“плавление” двойной спи-рали ДНК на коротких участках, обогащенных АТ-парами ) в виде локализованных дислокаций ( уединенных волн). Марио Салерно, про- должая работу Инглендера, в упрощенном варианте выявил влияние последовательности нуклеотидов на нелинейную динамику вращательных колебаний нуклеотидов на однотяжных участках ДНК, образующих такие открытые (“open state”) области. Позднее Якушевич, Федянин, Хомма и др. рассмотрели различные обобщения модели Инглендера, с оценкой особенностей строения ДНК, учитывая обрыв водородной связи при открытии оснований, парность цепи ДНК и другие степени свободы, отличные от вращательных. Однако, в указанных работах недостаточно сказано о причинах возникновения дислокаций в ДНК. Мы предлагаем возможный механизм этого процесса в ДНК, альтернативный гипотезе Инглендера о воздействии теплового шума как причины раскрытия пар оснований. Мы считаем, что дислокации на ДНК могут возникать при изменении периода спирали ДНК (основная часть идеи принадлежит М.Ю.Маслову).

В нашей модели нуклеотиды ДНК рассматриваются как осцилляторы, подвешенные на невесомом нерастяжимом стержне; сахаро-фосфатная связь между соседними нуклеотидами в цепи моделируется линейными пружинами; спирализация вдоль цепи не учитывается; водородные связи между комплементарными основаниями моделируется “гравитационным” потенциалом. Гамильтониан по М. Салерно выглядит следующим образом: (1)

где:  углы вращений нуклеотидов в разных цепях,  константы упругости вдоль цепей,  число пар в цепи,  момент инерции оснований,  константа упругости водородных связей между комплементарными основаниями.

Коэффициенты в уравнении (1) определяются в соответствии с правилом: в случае АТ и ТА пар, в случае ГЦ и ЦГ пар;  параметр, определенный Федяниным и Якушевич1 и полученный на основе модели синус-Гордона и экспериментальных данных. Далее для упрощения модели считается, что

Уравнения движения для разности , полученные из (1), имеют по М. Салерно вид:

(2)

где произведена замена .

В случае , в системе (2) можно перейти к безразмерному дифференциальному уравнению синус-Гордона:

, (3)

”непрерывный аналог” системы (2). Это уравнение имеет солитонные решения, в частности, односолитонное решение, или кинк, соответствует дислокации в цепи.

Основным предположением моделей ИнглендераСалерно является то, что взаимодействие между комплементарными основаниями описывается потенциалом (4), в котором не учитывается обрыв водородной связи.

В нашей работе рассматривается следующий потенциал :



Кроме того, учитывается вязкость водной среды (в воде вязкость ~ 1).

Рассматриваются также факторы, приводящие к спирализации ДНК, при этом они считаются внешними силами, задаваемыми потенциалом



где  период спирали.

Уравнения (2) с потенциалом и с учетом вязкости принимают вид:

(5)

Известно, что период спирали ДНК меняется в зависимости от влажности. В частности, для кристаллической ДНК , а в водной среде  в пределах от 10. 3 до 10. 6. Именно этим фактором обусловлено явление суперспирализации. При изменении шага спирали в цепи ДНК (с фиксированными или замкнутыми концами) возникает напряжение, связанное с недостатком (избытком) количества витков спирали до релаксированного состояния. Если , то при переходе из сухого в увлажненное состояние для цепи длиной в 300 пар оснований возникнет избыток в витка.

В нашей работе на основе результатов численного моделирования, представленных ниже, выдвигается следующая гипотеза: изменение шага спирали может привести не только к суперспирализации, но и к локальному распариванию цепи ДНК. Кроме того, при суперспирализации напряжение в цепи снимается не полностью, поэтому локальное распаривание, вероятно, может происходить и одновременно с суперспирализацией.

Система (5) численно интегрировалась в интервале с шагом . Начальные условия следующие:



Период спирали в системе (5) длина poly(A)-цепи  300 пар оснований. То есть параметры периода спирали в начальных условиях и в системе (5) различны. Таким образом смоделирован перенос ДНК из кристаллического состояния в увлажненное.

Граничные условия следующие (назовем их “квазициклическими”):



Особенностью данной модели является то, что при переходе из состояния с периодом в 10 пар в состояние с периодом в 10, 5 пар почти вся цепь оказывается денатурированной (“расплавленной”). Приведенные ниже результаты описывают процесс ренатурации такой цепи с возникновением дислокаций.

В этих экспериментах варьировались параметры: 1) диссипация 2) отношение параметров упругости 3) угол обрыва водородных связей .

На рис. 3 и 4 представлены результаты численного интегрирования системы (5). Показана не сама функция , а разница , поскольку область изменения функции (приблизительно от до ) велика по сравнению с характерными изменениями в системе (приблизительно от 0 до 9). Горизонтальная часть графиков соответствует нераспаренному участку цепи с периодом спирали . Наклонная часть графиков на рис. 3(a), 4(а) соответствует дислокации.

Можно сделать следующие выводы:

1) Способность к образованию дислокации в этой модели сильно зависит от . При дислокация возникла во всех рассмот-ренных случаях.

2) Способность к образованию дислокации также сильно зависит от параметра. Во всех случаях, когда параметр велик (

на рис. 1.а, 2.а ), дислокация возникла. В пользу этого утверждения также свидетельствует сравнение рис. 3(а) и 4(г).

Как показывают дополнительные расчеты, влияниена эффект проявляется в меньшей степени. Дислокация образуется или не образуется вне зависимости от значения ( или ). При больших значениях дислокация образуется медленнее, чем при меньших.

3) На рис. 3(а), 4(в,г) видно, что дислокация имеет кинкообразную форму.

Ширина дислокации зависит от параметров (чем больше , тем меньше ширина дислокации) и (чем больше , тем меньше ширина дислокации).

Развивая дальше модели солитонных возбуждений в ДНК (совместно с М.Ю.Масловым и др.) мы использовали условия, при которых цепочки ДНК моделируются набором ровибронных осцилляторов, подвешенных на невесомом нерастяжимом стержне; для простоты спирализация цепи не учитывается, а ровибронные степени свободы одной из цепочек считаются “замороженными”.

В этом случае гамильтониан для “активной” цепочки записывается в следующем виде:

H=H0+H1+H2

(1)

где:  число пар оснований в цепи;  гамильтониан, описывающий собственные осцилляции мономеров (  углы вращения нуклеотидов в цепочке,  момент инерции оснований);  гамильтониан , характеризующий нелинейно-периодическую связь между осцилляторами ( константа упругости цепочки, ),  гамильтониан,


(а)


(б)

1   2   3   4   5   6   7   8   9   10   11

Похожие:

Гаряев П. П. – Волновой генетический код iconРоссийской Академии Наук П. П. Гаряев волновой генетический код удк 575. 17
Предлагаемая работа “Волновой генетический код” написана через три года после выхода моей монографии “Волновой геном” и, несмотря...
Гаряев П. П. – Волновой генетический код iconТема урока: Биосинтез белков. Понятие о гене. Днк источник генетической информации. Генетический код
Тема урока: Биосинтез белков. Понятие о гене. Днк – источник генетической информации. Генетический код, раздел «Органическая химия...
Гаряев П. П. – Волновой генетический код iconПрограмма вступительного экзамена в аспирантуру ициГ по специальности
Основная догма молекулярной генетики. Матричный принцип. Процессы репликации, транскрипции, трансляции. Генетический код
Гаряев П. П. – Волновой генетический код iconЗадача оптимальной упаковки; комбинированный алгоритм; волновой алгоритм; ресурсная эффективность
Комбинированный и волновой алгоритмы решения задачи упаковки: принципы построения и особенности
Гаряев П. П. – Волновой генетический код iconНии эдито (в составе онц рамн)
Дейчман А. М. “Генетический код: взаимодействие аминокислот белков (фрагментов, пептидов) в соответствии с различными правилами,...
Гаряев П. П. – Волновой генетический код iconБюллетень новых поступлений за май 2007 года
Генетический код : от теории эволюции до расшифровки ДНК / А. Азимов; [пер с англ. Д. А. Лихачева]. М. Центрполиграф, 2006. 202 с....
Гаряев П. П. – Волновой генетический код iconПластический обмен. Биосинтез белка
«обмен веществ», «пластический обмен», «энергетический обмен», «триплет», «генетический код», «комплементарность»
Гаряев П. П. – Волновой генетический код iconЭлективный курс Предмет: Биология Тема: «Прикладная генетика»
«Золотой век». За время, прошедшее от открытия структуры ДНК в 1953 г до появившейся не так давно возможности расшифровать генетический...
Гаряев П. П. – Волновой генетический код iconГенетический поиск свойств вещественно-полевых ресурсов
Ключевые слова: базис Бартини, тренды ресурсов, генетический алгоритм, селекция свойств икс-элемента
Гаряев П. П. – Волновой генетический код iconМинистерство образования и науки российской федерации
Информационные процессы в клетке: репликация, транскрипция, трансляция, (репарация, сплайсинг). Генетический код. Классические опыты...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница