Скачать 1.59 Mb.
|
СОДЕРЖАНИЕ.
1.3. Цели и задачи изучения геометрии в основной школе – 4 стр. 1.4. Организация учебно-воспитательного процесса (особенности методики преподавания предмета) – 6 стр.
5.1. Содержание обучения 7 класса – 12 стр. 5.2. Содержание обучения 8 класса – 14 стр. 5.3. Содержание обучения 9 класса – 16 стр.
6.1. Учебная нагрузка 7 класса – 18 стр. 6.2. Учебная нагрузка 8 класса – 18 стр. 6.3. Учебная нагрузка 9 класса – 18 стр.
9.1. Тематическое планирование учебного материала 7 класса – 23 стр. 9.2. Тематическое планирование учебного материала 8 класса – 25 стр. 9.3. Тематическое планирование учебного материала 9 класса – 28 стр. Х. Поурочное планирование учебного материала – стр. 10.1. Поурочное планирование учебного материала 7 класса – стр. 10.2. Поурочное планирование учебного материала 8 класса – стр. 10.3. Поурочное планирование учебного материала 9 класса – стр. XI. Тексты контрольных работ – 31 стр. 11.1. Тексты контрольных работ по геометрии для 7 класса – 31 стр. 11.2. Тексты контрольных работ по геометрии для 8 класса – 33 стр. 11.3. Тексты контрольных работ по геометрии для 9 класса – 36 стр. I. Пояснительная записка. 1.1. Общие положения. Рабочая программа по геометрии для 7 – 9 классов составлена и разработана на основе Федерального компонента Государственного образовательного стандарта основного общего образования по математике, требований к уровню подготовки выпускников основной школы, программы общеобразовательных учреждений по математике и направлена на реализацию математического образования школьников в полном объёме. Данная программа рассчитана на 192 часа: 2 часа в неделю начиная со второй четверти в 7 классе (52 часа), 2 часа в неделю в 8 классе (70 часов), 2 часа в неделю в 9 классе (70 часов). Данный курс обеспечивает обязательный общеобразовательный минимум подготовки учащихся по математике. Годовая учебная нагрузка в 52 часа в 7 классе и 70 часов в 8 и 9 классах соответствует санитарным и гигиеническим нормам. 1.2. Общая характеристика учебного предмета. Математическое образование по геометрии в основной школе складывается из следующих содержательных компонентов: арифметика, алгебра, геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами. Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры. Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей. В ходе освоения содержания курса геометрии учащиеся получают возможность:
1.3. Цели и задачи изучения геометрии в основной школе. Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
В соответствии с целью формируются задачи учебного процесса: систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин (физика, черчение и т.д.) и курса стереометрии в старших классах. Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приёмами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет начать работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания. Цели обучения математики в общеобразовательной школе определяются её ролью в развитии общества в целом и формировании личности каждого отдельного человека. Исторически сложились две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария , необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определённым методом познания и преобразования мира математическим методом. Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения – от простейших, усваиваемых в непосредственном опыте людей, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие научных знаний, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчёты, пользоваться общеупотребительной вычислительной техникой, находить в справочниках и применять нужные формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др. Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, всё больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и многое другое). Таким образом, расширяется круг школьников, для которых математика становится профессионально значимым предметом. Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определённых умственных навыках. В процессе математической деятельности в арсенал приёмов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирования и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач – основной учебной деятельности на уроках математики – развиваются творческая и прикладная стороны мышления. Использование в математике наряду с естественным нескольких математических языков даёт возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства. Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в её современном толковании является общее знакомство с методами познания действительности, что включает понимание диалектической взаимосвязи математики и действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Изучение математики способствует эстетическому восприятию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Изучение математики развивает воображение, пространственные представления. История развития математического знания даёт возможность пополнить запас историко-научных знаний школьников, сформировать у них представление о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека. 1.4. Организация учебно-воспитательного процесса (особенности методики преподавания предмета). Образовательный и воспитательные задачи обучения математике должны решаться комплексно с учётом возрастных особенностей учащихся, специфики математики как науки и учебного предмета, определяющей её роль и место в общей системе школьного обучения и воспитания. Учителю предоставляется право самостоятельного выбора методических путей и приёмов решения этих задач. Принципиальным положением организации школьного математического образования в основной школе становится уровневая дифференциация обучения. Это означает, что, осваивая общий курс, одни школьники в своих результатах ограничиваются уровнем обязательной подготовки, зафиксированным в обязательном минимуме содержания основных образовательных программ, другие в соответствии со своими склонностями и способностями достигают более высоких рубежей. При этом достижение уровня обязательной подготовки становится непременной обязанностью ученика в его учебной работе. В то же время каждый имеет право самостоятельно решить, ограничиться этим уровнем или же продвигаться дальше. Именно на этом пути осуществляются гуманистические начала в обучении математике. В организации учебно-воспитательного процесса важную роль играют задачи. В обучении математике они являются и целью, и средством обучения и математического развития школьников. При планировании уроков следует иметь в виду, что теоретический материал осознаётся и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся, основанный на достижении обязательного уровня подготовки. Это способствует нормализации нагрузки школьников, обеспечивает их посильной работой и формирует у них положительное отношение к учёбе. Следует всемерно способствовать удовлетворению потребностей и запросов школьников, проявляющих интерес, склонности и способности к математике. Такие школьник должны получать индивидуальные задания (и в первую очередь нестандартные математически задачи), их следует привлекать к участию в математических кружках, олимпиадах, факультативных занятиях; желательно рекомендовать им дополнительную литературу. Развитие интереса к математике является важнейшей целью учителя. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приёмов обучения, её оптимизация с учётом возраста учащихся, уровня их математической подготовки, развития общеучебных умений, специфики решаемых образовательных и воспитательных задач. В зависимости от указанных факторов учителю необходимо реализовать сбалансированное сочетание традиционных и новых методов обучения, оптимизировать применение объяснительно-иллюстративных и эвристических методов, использование информационно-коммуникативных и технических средств обучения, включая мультимедийные. Критерием успешной работы учителя должно служить качество математической подготовки школьников, выполнение поставленных образовательных и воспитательных задач, а на формальное использование какого-то метода, приёма, формы или средства обучения. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов. II. Обязательный минимум содержания основных образовательных программ. 2.1. Арифметика. Измерения, приближения, оценки. Единицы измерения длины, площади, объема. Размеры объектов окружающего мира (от элементарных частиц до Вселенной). Представление зависимости между величинами в виде формул. 2.2. Алгебра. Уравнения и неравенства. Переход от словесной формулировки соотношений между величинами к алгебраической. Решение геометрических задач алгебраическим способом. Координаты. Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке. 2.3. Геометрия. Начальные понятия и теоремы геометрии Возникновение геометрии из практики. Геометрические фигуры и тела. Равенство в геометрии. Точка, прямая и плоскость. Понятие о геометрическом месте точек. Расстояние. Отрезок, луч. Ломаная. Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла и ее свойства. Параллельные и пересекающиеся прямые. Перпендикулярность прямых. Теоремы о параллельности и перпендикулярности прямых. Свойство серединного перпендикуляра к отрезку. Перпендикуляр и наклонная к прямой. Многоугольники. Окружность и круг. Наглядные представления о пространственных телах: кубе, параллелепипеде, призме, пирамиде, шаре, сфере, конусе, цилиндре. Примеры сечений. Примеры разверток. Треугольник. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Сумма углов треугольника. Внешние углы треугольника. Зависимость между величинам сторон и углов треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников. Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Теорема косинусов и теорема синусов; примеры их применения для вычисления элементов треугольника. Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера. Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция. Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника. Измерение геометрических величин. Длина отрезка. Длина ломаной, периметр многоугольника. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Длина окружности, число ; длина дуги. Величина угла. Градусная мера угла, соответствие между величиной угла и длиной дуги окружности. Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона. Площадь четырехугольника. Площадь круга и площадь сектора. Связь между площадями подобных фигур. Объем тела. Формулы объема прямоугольного параллелепипеда, куба, шара, цилиндра и конуса. Векторы Вектор. Длина (модуль) вектора. Координаты вектора. Равенство векторов. Операции над векторами: умножение на число, сложение, разложение, скалярное произведение. Угол между векторами. Геометрические преобразования Примеры движений фигур. Симметрия фигур. Осевая симметрия и параллельный перенос. Поворот и центральная симметрия. Понятие о гомотетии. Подобие фигур. Построения с помощью циркуля и линейки Основные задачи на построение: деление отрезка пополам, построение треугольника по трем сторонам, построение перпендикуляра к прямой, построение биссектрисы, деление отрезка на n равных частей. Правильные многогранники. 2.4.Элементы логики, комбинаторики, статистики и теории вероятностей.. Доказательство. Определения, доказательства, аксиомы и теоремы; следствия. Необходимые и достаточные условия. Контрпример. Доказательство от противного. Прямая и обратная теоремы. Понятие об аксиоматике и аксиоматическом построении геометрии. Пятый постулат Эвклида и его история. III. Уровень подготовки учащихся к концу изучения курса геометрии основной школы. В результате изучения курса геометрии основной школы учащийся должен: знать/понимать
уметь:
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
IV. Способы контроля качества обучения. Основным способом контроля качества усвоения программного материала является письменная контрольная работа. Кроме контрольной работы также применяются другие способы проверки знаний, умений и навыков учащихся в виде срезовых и административных контрольных работ, самостоятельных письменных работ, тестирования, математического диктанта и фронтального контрольного опроса. V. Содержание обучения. |