Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук,




НазваниеУчебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук,
страница9/14
Дата18.01.2013
Размер1.71 Mb.
ТипУчебно-методический комплекс
1   ...   6   7   8   9   10   11   12   13   14

Вариант третий

ЗАДАЧА № 1

  1. Произведите группировку магазинов №№ 5 ... 19 (см. Приложение 1) по признаку относительного уровня издержек обращения (в процентах к товарообороту), образовав при этом 4 группы с равными интервалами.

  2. Охарактеризуйте каждую группу и всю совокупность магазинов числом магазинов, размером товарооборота, издержек обращения и торговой площади.

  3. Определите средние размеры товарооборота, издержек обращения и торговой площади, приходящиеся на один магазин.

  4. Определите средний относительный уровень издержек обращения по каждой группе и в целом.

Полученные результаты оформите в виде статистической таблицы. Сделайте выводы.


ЗАДАЧА № 2

Имеются следующие данные о средней заработной плате продавцов по трем секциям одного из торговых предприятий за три периода:

Номера секций

1-й период

2-й период

3-й период

Средняя заработ-ная плата продавцов (тыс. руб.)

Средняя численность работников (чел.)

Средняя заработ-ная плата одного работника (тыс. руб.)

Фонд оплаты труда (тыс. руб.)

Фонд оплаты труда (тыс. руб.)

Средняя числен-ность работников (чел.)

1

2

3

4

5

6

7

1

12,5

6

13,0

65,0

98,0

7

2

14,8

4

38

66.0

85,0

5

3

15,0

5

16

144,0

114,0

6

Определите:

  1. Среднюю заработную плату одного продавца по торговому предприятию в целом и для каждого периода.

  2. Изменение средней заработной платы одного продавца по торговому предприятию в целом во втором периоде и в третьем периоде по сравнению с первым периодом и в третьем периоде по сравнению со вторым периодом (в абсолютных и относительных величинах).

Дайте обоснование применения формул для расчета средних величин и сделайте выводы.

ЗАДАЧА № 3

Для оценки качества поступившей партии товара произведено 5-процентное выборочное обследование. На основе механического бесповторного отбора проб получены следующие данные о содержании влаги:

Процент влажности

до 6

6 – 8

8 – 10

10 – 12

12 – 14

14 и более

Итого

Число проб

5

25

32

19

13

6

100

При условии, что к стандартной относится продукция с влажностью до 14 %, определите для всей партии товара:

  1. С вероятностью 0,997 возможные пределы доли нестандартной продукции.

  2. С вероятностью 0,954 возможные пределы среднего процента влажности.

Сделайте выводы.

ЗАДАЧА № 4

Имеются следующие данные о товарообороте торговой фирмы и среднем изменении цен:

Месяцы

Январь

Февраль

Март

Апрель

Май

1

2

3

4

5

6

Товарооборот в факти-ческих ценах (тыс. руб.)

1920

1980

2215

2318

2620

Индекс цен (в процентах к предыдущему месяцу)

100,0

104,2

105,3

110,2

116,1

  1. Для анализа динамики физического объема товарооборота пересчитайте товарооборот за соответствующие месяцы из фактических цен в сопоставимые.

  2. Определите: абсолютные, относительные и средние показатели динамики физического объема товарооборота (интенсивность динамики изобразите графически).

  3. Произведите анализ общей тенденции физического объема товарооборота методом аналитического выравнивания (фактические и теоретические уровни изобразите на графике).

Полученные результаты оформите в виде статистической таблицы. Сделайте выводы.


ЗАДАЧА № 5

Имеются следующие данные о продаже продукта «М» на рынке города за два периода:

Продавцы

Количество (т)

Цена (руб.)

декабрь

март

декабрь

март

1

2

3

4

5

1

10,5

12,0

38,5

33,3

2

36,6

10,6

30,4

39,2

3

18,6

18,4

32,2

38,0

4

24,0

20,2

30,9

36,7

Для анализа динамики средней цены реализации продукта «М» определите:

  1. Индексы цен: переменного и постоянного состава.

  2. Индекс структурных сдвигов.

  3. Изменение средней цены (в абсолютных величинах) в марте по сравнению с декабрем: общее и за счет действия отдельных факторов.

  4. Покажите взаимосвязь исчисленных общих индексов.

Сделайте выводы по полученным результатам.

ЗАДАЧА № 6

Имеются данные о товарообороте в сопоставимых ценах и изменении цен на товары по торговому предприятию за два периода:

Товарные группы

Товарооборот в сопоставимых ценах (млн. руб.)

Среднее изменение цен (%)

1-й период

2-й период

1

2

3

4

А

46,8

48,4

+10

Б

85,4

100,8

–16

В

74,2

70,0

без изменения

Г

56,6

54,1

+20

Определите:

  1. Индивидуальные и общие индексы: цен, товарооборота в фактических ценах и физического объема товарооборота; покажите их взаимосвязь.

  2. Изменение покупательной способности рубля во 2-м периоде по сравнению с 1-м периодом.

  3. Прирост товарооборота в фактических ценах во 2-м периоде по сравнению с 1-м периодом в целом и в том числе за счет влияния отдельных факторов.

Сделайте выводы по полученным результатам.


ЗАДАЧА № 7

Дайте оценку тесноты связи между объемом товарооборота и размером издержек обращения магазинов №№ 5 ... 19 (см. Приложение 1), рассчитав при этом коэффициент корреляции рангов Спирмена.

Сделайте выводы.

ЗАДАЧА № 8

Используя исходные данные к задаче № 1, постройте уравнение регрессии между объемом товарооборота и размером издержек обращения магазинов №№ 5 ... 19. Фактические и теоретические уровни перенесите на график корреляционного поля и сделайте выводы.


МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВАРИАНТУ №3

Рассмотрим модели межотраслевого баланса — аппарат прогнозирования и планирования на макроуровне.

Центральная идея межотраслевого баланса заключается в том, что каждая отрасль в нем рассматривается и как производитель и как потребитель. Модель межотраслевого баланса — одна из самых простых экономико-математических моделей. Она представляет собой единую взаимоувязанную систему информации о взаимных поставках продукции между всеми отраслями производства, а также об объеме и отраслевой структуре основных производственных фондов, об обеспеченности народного хозяйства ресурсами труда и т. д.

Такая модель позволяет рассчитать сбалансированный план на основе точного учета всех межотраслевых связей и рассмотреть при этом множество возможных вариантов.

В основе исследований балансовых моделей лежат балансовые таблицы, содержащие данные о производстве и потреблении продукции различных отраслей или предприятий. Такие балансы затрат выпуска продукции отражают сложные взаимосвязи между различными отраслями производства, характеризуют общественно необходимые затраты в процессе производства (производственное потребление), распределение общественного продукта, всесторонний оборот материальных ценностей и т. д.

В результате балансовых исследований могут быть изучены межотраслевые и межрайонные связи, рассчитаны полные затраты труда, капиталовложений, энергии и т. д. на производство единицы общественного продукта, исследован подробно оборот материальных ценностей в данном хозяйстве.

Характерные черты и особенности этого метода описываются с помощью матричных моделей баланса. Из математических методов здесь главным образом используется аппарат линейной алгебры.

Двухотраслевая модель межотраслевого баланса

Рассмотрим упрощенный пример, включающий две производственные отрасли [34]. Пусть исполнение баланса за предшествующий период характеризуется данными, приведенными в табл. 7.2.

Таблица 7.2. Пример матрицы прямых затрат

Отрасли




Потребление

Итого затраты

Конечный продукт

Валовый выпуск




1

2

Производство

1







240

500

2







85

400

Итого затрат в k-ю отрасль











Продукция каждой отрасли частично идет на внешнее потребление (конечный продукт), а частично используется в качестве сырья, полуфабрикатов или других средств производства в других отраслях, в том числе и в данной. Эту часть продукции называют производственным потреблением. Поэтому каждая из рассматриваемых отраслей выступает и как производитель продукции (я строка таблицы), и как ее потребитель (й столбец таблицы).

Обозначим черезваловый выпуск продукциий отрасли за планируемый период и через— конечный продукт, идущий на внешнее для рассматриваемой системы потребление (средства производства других экономических систем, потребление населения, образование запасов и т. д.). Таким образом, разность составляет часть продукции й отрасли, которая предназначена для внутрипроизводственного потребления. Предполагаем, что баланс составляется в стоимостном разрезе. Обозначим черезчасть продукции й отрасли, которая потребляется й отраслью для обеспечения выпуска ее продукции в размере

Очевидно, величины, расположенные в строках, связаны следующими балансовыми равенствами

(7.16)

Одна из задач балансовых исследований заключается в том, чтобы на базе данных об исполнении баланса за предшествующий период определить исходные данные на планируемый период.

Рассчитаем по данным таблицы коэффициенты прямых затрат. Это отношение количества продукции й отрасли, поступающей в ю отрасль для обеспечения выпуска ее продукции в размере т. е.



где

(7.17)

т. е. затраты й отрасли в ю отрасль пропорциональны ее валовому выпуску или, другими словами, зависят линейно от валового выпуска .

Выписанные соотношения называют условием линейности прямых затрат



Найденные коэффициенты образуют матрицу прямых затрат



Все элементыэтой матрицы неотрицательны. Это записывается в виде матричного неравенства.

Заданием матрицы А определяются все внутренние взаимосвязи между производством и потреблением, характеризуемые табл. 7.2.

Теперь можно записать линейную балансовую модель, соответствующую данным табл. 7.2, если подставить значения в балансовые равенства



В матричной форме



где



Эта система двух уравнений может быть использована для определенияипри заданных значенияхи, для исследования влияния на валовый выпуск любых изменений в ассортименте конечного продукта, для определения матрицы коэффициентов полных затрат, элементы которой служат важными показателями для планирования развития отраслей и т. д.

Общая модель межотраслевого баланса продукции

Таблица 7.3 представляет собой одну из основных экономических моделей — межотраслевой баланс производства и распределения продукции в народном хозяйстве (МОБ).

В общем виде МОБ состоит из четырех основных частей — квадрантов (табл. 7.3).

Таблица 7.3. Структура МОБ

Производящие отрасли

I квадрант

Потребляющие отрасли

Конечная продукция

Всего валовая

1

2





Потребление

Накопление

продукция

1















2















































Чистая продукция

Оплата труда
















Чистый доход















Всего валовая продукция














I + II квадранты

I + III квадранты

I квадрант содержит показатели материальных затрат на производство продукции. По строкам и столбцам отрасли располагаются в одинаковом порядке. Величинапредставляет собой стоимость средств производства, произведенных в й отрасли и потребленных в качестве материальных затрат в й потребляющей отрасли. Можно сказать, что сумма всех элементов квадратной матрицы n-го порядка, стоящей в первом квадранте, равняется годовому фонду возмещения затрат средств производства в материальной сфере.

Во II квадранте показана конечная продукция, используемая на непроизводственное потребление, накопление и экспорт. Тогда этот квадрант можно рассматривать как распределение национального дохода на фонд накопления и фонд потребления по отраслям производства и потребления.

В III квадранте характеризуется национальный доход, но со стороны его стоимостного состава чистой продукции (оплата труда, прибыль, налог с оборота и др.).

В IV квадранте отражается перераспределение чистой продукции. В результате перераспределения первоначально созданного национального дохода образуются конечные доходы населения, предприятий, государства. Если все показатели МОБ записаны в денежном выражении, то по столбцам баланса они представляют формирование стоимости валовой продукции, а по строкам — распределение той же продукции в народном хозяйстве. Поэтому показатели строк и столбцов равны.

Валовая продукция отраслей представлена в табл. 7.3 в виде столбца, расположенного справа от второго квадранта и в виде строки, расположенной под третьим квадрантом. Эти столбец и строка играют важную роль как для проверки правильности самого баланса (заполнения квадрантов), так и для разработки экономико-математической модели межотраслевого баланса.

В целом межотраслевой баланс в рамках общей модели объединяет балансы отраслей материального производства, баланс совокупного общественного продукта, балансы национального дохода, баланс доходов и расходов населения.

Исходя из формулы (7.17), разделим показатели любого столбца МОБ на итог этого столбца (или соответствующей строке), т. е. на валовую продукцию. Получим затраты на единицу этой продукциикоторые образуют матрицу прямых затрат А:

(7.18)

Стоимостной баланс наряду с уравнениями

(7.19)

каждое из которых представляет распределение продукции данной отрасли по всем отраслям, допускает построение уравнений в форме потребления продукции



где — материальные затратый потребляющей отрасли;

— ее чистая продукция (— сумма оплаты труда;— чистый доход).

Подставив в уравнения (7.19) соотношения (7.17), после преобразований получим

(7.20)

Систему уравнений МОБ можно записать в матричной форме

(7.21)

где Е — единичная матрица; А — матрица прямых затрат (7.18); X и Y — вектор-столбцы:

(7.22)

Система уравнений (7.20), или в матричной форме (7.21), называется экономико-математической моделью межотраслевого баланса (моделью Леонтьева).

Модель межотраслевого баланса (7.21) позволяет решить следующие задачи:

- определить объем конечной продукции отраслей по заданным объемам валовой продукции

- по заданной матрице коэффициентов прямых затрат А определить матрицу коэффициентов полных затрат



элементы которой служат важными показателями для планирования развития отраслей;

- определить объемы валовой продукции отраслей по заданным объемам конечной продукции и пр.

Косвенные затраты. Прямые затраты играют в составлении баланса исключительно важную роль. Они служат важной экономической характеристикой, без знания которой планирование народного хозяйства не представлялось бы возможным.

Матрица прямых затрат по существу определяет структуру экономики. Если известны прямые затраты и конечный продукт каждой отрасли хозяйства, то можно вычислить объем валовой продукции.

Чтобы выпустить автомобиль, нужно обеспечить электроэнергией не только сам завод, но и прокатные станы металлургического комбината, и шинный завод, и много других. Поэтому если прямо на один автомобиль затрачивается 1,4 тыс. кВт - ч электроэнергии, то на всех промежуточных стадиях — еще 2 тыс. кВт - ч (косвенные затраты электроэнергии), а всего 3,4 тыс. кВт - ч. Чтобы произвести 1 т штапельного волокна из лавсана, требуется около 50 тыс. рублей капитальных вложений непосредственно для завода химических волокон, а в сопряженных отраслях — еще около 80 тыс. руб. Чтобы произвести на 10 000 руб. мясных изделий, капиталовложения в мясную промышленность должны составить 900 руб., а в других сопряженных отраслях — 18 000 руб., т. е. в 20 раз больше.

Таким образом, прямые затраты не отражают в полной мере сложных количественных взаимосвязей, наблюдающихся в народном хозяйстве. Они, в частности, не отражают обратных связей, имеющих далеко немаловажное значение.

На изготовление трактора в виде прямых затрат расходуется чугун, сталь и т. д. Но для производства стали также нужен чугун. Таким образом, кроме прямых затрат чугуна, имеются и косвенные затраты чугуна, связанные с производством трактора. В эти косвенные затраты входит и чугун, необходимый для создания того количества чугуна, которое составляет прямые затраты. Эти косвенные затраты могут иногда существенно превышать прямые затраты.

Полные внутрипроизводственные затраты. Система уравнений межотраслевого баланса в матричной форме была представлена в виде (7.21)

(Е - А)Х = Y. Пусть имеется матрица



если умножить левую и правую части уравнения (7.21) на матрицу Р, то получим:

(7.23)

Е х X = Р х Y.


То есть объемы производства отраслейопределяются как

X = Р х Y,

по заданным величинам конечного продукта потребления Y и матрице Р.

Матрицу Р называют матрицей коэффициентов полных затрат.

Элементы матрицы Р включают не только затраты й продукции, необходимой для создания одной единицы й продукции, но и те затраты, которые необходимы для создания в каждой отрасли одной единицы конечного продукта.

Значит, полные затратывключают как прямыетак и косвенные затраты. Очевидно, что всегда.

Матрица коэффициентов полных затрат является суммой сходящегося матричного ряда

(7.24)

Матрицыназываются матрицами коэффициентов косвенных затрат 2-го, 3-го и т. д. порядков, и коэффициенты полных затрат получаются в виде суммы коэффициентов прямых затрат и косвенных затрат.

Валовый выпуск й отраслиопределяется как



Для примера табл. 7.2 имеем





Найдем обратную матрицу



которая является матрицей косвенных затрат.

Динамические модели межотраслевого баланса

Динамические модели МОБ — частный случай динамических моделей экономики, основаны на принципе межотраслевого баланса, в который дополнительно вводятся уравнения, характеризующие изменения отраслевых связей во времени на основе отдельных показателей, например капитальных вложений и основных фондов (что позволяет создать преемственность между балансами отдельных периодов).

Единообразного метода решения этой задачи нет. В принципе она может решаться следующим образом (при условии, что в динамической межотраслевой модели, как и в статическом межотраслевом балансе связи принимаются линейными). В отличие от уравнений статического межотраслевого баланса, где конечный продукт каждой отрасли представлен одним слагаемым, здесь он распадается на два — фонд накопления и фонд непроизводственного потребления.

Система уравнений (7.20) в этом случае записывается так:



где — часть продукциий отрасли, идущая в фонд накопления;— часть продукциий отрасли, выделяемая на непроизводственное потребление.

Такие модели с разделением конечного продукта называются «моделями леонтьевского типа» (по имени американского экономиста В. Леонтьева).

Ту часть фонда накопления, которая передается «фондообразующей отраслью»вю отрасль, обозначим. Тогда общее количество капитальных вложений, направляемых вю отрасль, определяется по формуле:



Отсюда, зная коэффициент фондоотдачи вй отрасли, можно вычислить прирост ее валовой продукции. Таким образом, получаем описание цикла воспроизводства (обычно за один год) — от создания фондов до выявления возросших в результате их использования производственных возможностей.

Конечно, здесь допущено много нереалистичных упрощений (например, новые средства производства «немедленно» дают продукцию, тогда как в действительности для этого требуется существенный лаг). Но модель показывает, что для управления процессом решающее значение имеет соотношение между фондом накопления и фондом потребления конечной продукции.

Экономистами разрабатываются разные типы динамических межотраслевых моделей, в том числе более сложные, но зато и более адекватно описывающие динамику экономического развития (хотя и здесь еще упрощения существенны). Во-первых, модели с обратной рекурсией, в которых балансы производства и распределения продукции за последний год планового периода сочетаются с уравнениями потребности в капитальных вложениях за весь плановый период. На втором этапе решения такой модели показатели производства продукции и капитальных вложений распределяются по всем годам планового периода в направлении от последнего года к первому (откуда и название модели).

Во-вторых, модели поэтапного расчета объемов производства продукции и капитальных вложений для каждого года планового периода представляются обычно как совокупность балансов производства продукции и капитальных вложений, потребность в которых для будущих лет устанавливается путем нормирования незавершенного строительства.

В-третьих, модели с явным учетом лага капитальных вложений, в которых показана прямая и обратная их связь во времени с показателями производства продукции. С одной стороны, объемы продукции отраслей, создающих средства производства («фондосоздающих»), зависят от тенденций развития производства в будущем. С другой стороны, потребность в приросте фондов в данном году во многом зависит от их динамики в прошлом. Модели с явным учетом лага капитальных вложений точнее других отражают процессы воспроизводства, но они и сложнее по структуре. Кроме того, их трудно обеспечить необходимой информацией.

1   ...   6   7   8   9   10   11   12   13   14

Похожие:

Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук, iconУчебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: к т. н., доц. Мосьяков В. Е. Учебно-методический комплекс дисциплины «Теория Экономических информационных систем»
«Теория Экономических информационных систем» составлен в соответствии с требованиями Государственного образовательного стандарта...
Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук, iconУчебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Авторы-составители: канд техн наук, профессор Д.
«Разработка и стандартизация программных средств и информационных технологий» составлен в соответствии с требованиями Государственного...
Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук, iconУчебно-методический комплекс Для студентов специальности 080801 Прикладная информатика (в экономике) Москва 2008 Автор-составитель: Чекмарев Ю. В., к т. н., доцент, профессор Учебно-методический комплекс «Вычислительные системы, сети и телекоммуникации»
Учебно-методический комплекс «Вычислительные системы, сети и телекоммуникации» составлен в соответствии с требованиями Государственного...
Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук, iconУчебно-методический комплекс Для специальности 080801 Прикладная информатика (в экономике) м осква 2008 Автор-составитель: к т. н., доцент, профессор Д. Ю. Нечаев Учебно-методический комплекс по дисциплине «Операционные системы, среды и оболочки»
Государственного образовательного стандарта высшего профессионального образования II поколения (номер государственной регистрации...
Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук, iconУчебно-методический комплекс для специальности 080801 Прикладная информатика (в экономике) Москва 2007 Составители: доц. А. Б. Мосягин, доц. А. Н. Денисов, преп. Е. А. Кошелева Учебно-методический комплекс «Информатика и программирование»
Учебно-методический комплекс «Информатика и программирование» составлен в соответствии с требованиями Государственного образовательного...
Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук, iconУчебно-методический комплекс Специальность: 080801 Прикладная информатика ( в экономике) Москва 2009 Авторы-составители: Макаров Валерий Федорович, доктор технических наук,
Макаров Валерий Федорович, доктор технических наук, профессор, академик Российской Академии Естественных Наук по отделению «Информатика...
Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук, iconУчебно-методический комплекс Для специальности: 080801 «Прикладная информатика (в экономике)»
Учебно-методический комплекс «Сетевая экономика» составлен в соответствии с требованиями программы дисциплины с учетом требований...
Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук, iconУчебно-методический комплекс Для специальности 080801 «Прикладная информатика (в экономике)»
Учебно-методический комплекс «Системы моделирования принятия решений» составлен в соответствии с требованиями программы дисциплины...
Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук, iconУчебно-методический комплекс Специальность: 080301 Коммерция (торговое дело) Москва 2009 Автор-составитель: Кузьмина Евгения Евгеньевна, Доктор экономических наук, профессор Учебно-методический комплекс «История предпринимательства в России»
Учебно-методический комплекс «История предпринимательства в России» составлен в соответствии с требованиями Государственного образовательного...
Учебно-методический комплекс Специальность: 080801 Прикладная информатика (в экономике) Москва 2009 Автор-составитель: Федосеев Артём Игоревич, кандидат экономических наук, iconУчебно-методический комплекс Специальность: 080301 Коммерция (торговое дело) Москва 2006 Автор-составитель: Половцева Ф. П., кандидат технических наук, доцент, профессор Учебно-методический комплекс «Стратегическое планирование коммерческой деятельности»
Учебно-методический комплекс «Стратегическое планирование коммерческой деятельности» составлен в соответствии с требованиями Государственного...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница