Скачать 136.7 Kb.
|
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им. Н.И. Лобачевского» Физический факультет Кафедра физики полупроводников и оптоэлектроники Операционный усилитель (Лабораторная работа по курсу «Физические основы микроэлектроники») Нижний Новгород, 2005 УДК 621.382 Операционный усилитель: Лабораторная работа по курсу «Микроэлектроника» / Сост. Н.В. Федосеева, С.М. Планкина. – Н. Новгород, ННГУ, 2004. 14 с. Настоящее описание предназначено для студентов старших курсов физического факультета ННГУ, обучающихся по специальностям 010803 – «Микроэлектроника и полупроводниковые приборы» и 202000 – «Нанотехнология в электронике». Рис. 9. Составители: канд. физ.-мат. наук, доцент Н. В. Федосеева канд. физ.-мат. наук, ст. преподаватель С. М. Планкина Рецензент: канд. физ.-мат. наук, доцент В. Н.Шабанов Нижегородский государственный университет имени Н. И. Лобачевского, 2005 Введение Аналоговые интегральные микросхемы (АИС) предназначены для преобразования и обработки электрических сигналов, изменяющихся по непрерывному закону. Это либо напряжение U(t) или I(t).Успехи в области технологии и схемотехники способствовали тому, что АИС являются на данный момент основными компонентами аналоговых устройств и систем. Интегральная технология позволяет получать групповым методом на одной подложке совокупность элементов с взаимно согласованными характеристиками. Особенностью схемотехники АИС является реализация принципа схемотехнической избыточности. Он позволяет выбирать такие схемотехнические решения, которые в конечном итоге благодаря интегральной технологии улучшают качество изделий, минимизируют площадь кристалла, повышают технологичность. Все это привело к тому, что основной аналоговой микросхемой универсального назначения стал операционный усилитель. Операционным усилителем (ОУ) называют усилитель напряжения, предназначенный для выполнения различных операций над аналоговыми сигналами при работе в цепях с отрицательной обратной связью (ООС), в состав которых могут входить сопротивления (R), емкости (С), индуктивности (L), диоды, транзисторы и другие элементы. Основные требования к ОУ сводятся к тому, чтобы он как можно ближе соответствовал идеальному источнику напряжения, управляемому напряжением с бесконечно большим коэффициентом усиления. А это значит, что входное сопротивление ОУ должно быть равно бесконечности (R вх = ![]() СХЕМОТЕХНИКА ОПЕРАЦИОННОГО УСИЛИТЕЛЯ Условное обозначение ОУ приведено на рис.1. ![]() Рис.1. Условное обозначение операционного усилителя. Входные сигналы U вх1 и U вх2 можно подавать на любой из двух входов - инвертирующий (обозначен кружком) и неинвертирующий. Входная цепь ОУ выполнена по дифференциальной схеме. Имеются выводы для подачи питания Еп и подключения дополнительных схем. Разностное напряжение (Uвх1–Uвх2 )=Uдиф. является дифференциальным входным сигналом, оно приложено между инвертирующим и неинвертирующим входами ОУ. Выходное напряжение определяется в виде Uвых. = (Uвх1 -U вх2)*K, где К ![]() Полусумма напряжений 1 /2(Uвх1 +U вх2 ) называется синфазным сигналом. Для этого сигнала выходное напряжение должно быть равно нулю, однако в реальных усилителях это не выполняется. Эквивалентные схемы идеального и реального ОУ приведены на рис 2. ![]() а) ![]() б) Рис.2 Эквивалентные схемы ОУ (а - идеального, б - реального) Схема замещения идеального ОУ содержит источник напряжения Uвых, управляемый дифференциальным входным сигналом Uвых = (Uвх1 -U вх2 )*K. Входные токи в этой схеме отсутствуют, т.к. входное сопротивление равно бесконечности. Для реального усилителя (рис.2 б) схема замещения содержит источники входных токов iвх1, iвх2 , входное сопротивление rвх., источник напряжения смещения нулевого уровня есм, выходное сопротивление rвых. Эти схемы замещении можно использовать для расчета схем с ОУ в статическом режиме. При анализе динамических свойств для обеспечения устойчивости в широкой полосе частот используется частотная коррекция усиления, которая обеспечивает снижение усиления с ростом частоты. Эта частотная коррекция представляет собой интегрирующее звено, у которого коэффициент усиления обратно пропорционален частоте. ![]() а) ![]() б) Рис.3. Упрощенная структурная схема (а) и принципиальная схема (б) дифференциального ОУ. Схема замещения ОУ с учетом частотной коррекции приведена на рис. 3а. Она содержит входной дифференциальный каскад с коэффициентом передачи К1 , который преобразует входной дифференциальный сигнал в выходной ток, поступающий на интегрирующее звено с коэффициентом передачи К2 . Выходной каскад является усилителем мощности и представляет собой повторитель напряжения. Упрощенная принципиальная схема такого усилителя приведена на рис.3б. Дифференциальный каскад выполнен на транзисторах Т1 - Т4 ,транзисторы Т1,Т2 образуют дифференциальный усилитель, а транзисторы Т3, Т4 являются его динамической нагрузкой. Выходным сигналом первого каскада является ток, который поступает в интегрирующее звено, выполненное на транзисторах Т5 и Т6. Этот каскад имеет большой коэффициент передачи К2 и он охвачен емкостной обратной связью по схеме интегратора. Выходным сигналом интегратора тока является напряжение U1, равное напряжению на конденсаторе Ск. На транзисторах Т7, Т8 выполнен повторитель напряжения по схеме с эмиттерной нагрузкой. Рассмотрим взаимосвязь основных характеристик ОУ. Входной дифференциальный каскад характеризуется крутизной транзисторов Т1, Т2, для которых ток коллектора и напряжение на базе определяются выражением i1 =I0 ехр(Uвх. /φт ) (1) Тогда крутизна дифференциального каскада будет иметь значение S1 = K1 = dI1 /dUвх. =i1 / φт , (2) где I1 – коллекторный ток дифференциального каскада (ДК), φт- -тепловой потенциал. Для определения коэффициента передачи интегратора тока, воспользуемся зависимостью между напряжением и током в емкости Ск ic = 2i1 = Ck *dU1 /dt (3) Для переменного гармонического сигнала эта зависимость имеет вид 2i1 =ώ Ck U1 ,откуда коэффициент передачи интегратора К2 =U1/ic =U1 /2i1 =1/ώ Ck (4) Учитывая, что коэффициент передачи повторителя напряжения К3 =1, найдем полный коэффициент передачи ОУ К=К1* К2* К3 =S1 /ώCk (5) Таким образом, крутизна ДК и емкость коррекции Ск влияют на частотную зависимость коэффициента усиления ОУ. Если ώ ![]() ![]() ![]() Рис.4. Частотная зависимость коэффициента усиления ОУ. ![]() Рис.5. Зависимость максимальной амплитуды выходного сигнала от частоты. Предельная частота ОУ определяется условием, когда коэффициент усиления равен 1. К(ώпред. ) =0 дБ, ώпред =S1 /Cк. Динамические свойства ОУ описывают также при помощи скорости нарастания выходного напряжения VU вых . Учитывая, что Uвых = U1 имеем VU вых = dUвых. /dt =2i1 /Ck =2 φт S1/Ck =2 φт ώпред. (6 ) Следовательно, чем больше предельная частота, тем выше скорость нарастания выходного напряжения. Максимальная частота усиления большого сигнала ώмах (рис.5) определяет границу получения выходного сигнала с заданной амплитудой Uмах без искажения. Максимальная частота ώмах связана с максимальной скоростью нарастания гармонического сигнала на выходе ОУ. Если принять, что Uвых. =Uмах Sin ώt, то скорость изменения равна dUвых /dt =ώUмах Сos ώt и при Сos ώt=1 она будет иметь максимальное значение ( dUвых /dt)мах = ώмах * Uмах. Откуда ώмах = (VU вых )мах / Uмах. (7) ОСНОВНЫЕ ПАРАМЕТРЫ ОПЕРАЦИОННОГОУСИЛИТЕЛЯ 1. Коэффициент усиления по напряжению ОУ определяется отношением выходного сигнала к дифференциальному входному сигналу при работе усилителя на линейном участке статической характеристики (рис.6). К=Uвых. /Uвх.диф ![]() Рис.6.Передаточная характеристика ОУ. На рисунке видно три участка, которые соответствуют трем режимам работы ОУ. Участки 1 и 2 соответствуют режимам ограничения и Uвых не зависит от Uвх.диф и равно нижнему Uн и верхнему Uв уровням ограничения. Ограничение снизу является следствием насыщения выходного транзистора Т6, сверху - следствием насыщения выходного транзистора источника тока i2 (рис.3). Основой источника тока обычно является биполярный транзистор, включенный по схеме с общей базой (ОБ). Участок 3 соответствует режиму усиления, т.к .коэффициент усиления ОУ велик, характеристика почти вертикальна. 2. Напряжение смещения (есм ) - это дифференциальное входное напряжение Uвх.диф, при котором Uвых. =0. Максимальное по модулю |есм | ОУ, выполненного на биполярных транзисторах составляет 3-10 мВ. На рисунке 2б напряжение смещения показано в виде дополнительного источника сигнала, суммируемого с Uвх2. Поскольку есм имеет любую полярность, то безразлично, к какому входу добавлять дополнительный источник. 3. Средний входной ток (iвх.ср) - среднеарифметическое значение токов инвертирующего и неинвертирующего входов ОУ, измеренное при таком входном напряжении Uвх.диф, при котором Uвых =0. На рисунке 2б входные токи отражены в виде источников тока iвх1 и iвх.2. Средний входной ток ОУ с входными каскадами на БТ составляет 0,01-1,0 мкА. 4. Входное сопротивление (rвх), указанное на рис.2б, обычно относится к дифференциальному сигналу. Оно определяется как удвоенное входное сопротивление каждой половинки ДУ. rвх.диф.=2[( ![]() где rэ , rб – дифференциальные сопротивления эмиттера и базы. Для увеличения rвх целесообразно использовать ДУ в режиме малых токов – в микрорежиме, а также применять транзисторы с высокими значениями коэффициента усиления ![]() 5. Для синфазной составляющей входное сопротивление определяется сопротивлением источника тока (ri ) rвх.сф. =( ![]() Поскольку ri > rэ , то rвх.сф. > rвх.диф. 6. Выходное сопротивление ОУ определяется выходным сопротивлением эмиттерного повторителя rвых = rэ. Обычно оно составляет десятки Ом. ПРИМЕНЕНИЕ ОПЕРАЦИОННОГОУСИЛИТЕЛЯ Схема инвертирующего усилителя приведена на рис.7. ![]() Рис. 7. Схема инвертирующего усилителя. Здесь ОУ охвачен параллельной отрицательной обратной связью по напряжению (ООС). На инвертирующий вход ОУ по схеме подается сигнал, определяемый суммой входного и выходного напряжений делителем на сопротивлениях R1, R2 . Так как неинвертирующий вход ОУ соединен с общим выводом, а Uдиф. ![]() ![]() ![]() откуда находим коэффициент усиления усилителя: ![]() Входное сопротивление инвертирующего усилителя определяется в виде rвх инв. =R1 +rвх.диф. || [R2 /(K+1)] , (11) где второе слагаемое - сопротивление параллельно включенных входного сопротивления ОУ и уменьшенного в (К+1) раз сопротивления резистора обратной связи R2. Приближенно rвх инв. ![]() Схема неинвертирующего усилителя приведена на рис. 8 . ![]() Рис. 8. Схема неинвертирующего усилителя. В этой схеме используется также ООС по напряжению, но она последовательная: здесь дифференциальное входное напряжение ОУ определяется как разность входного напряжения и напряжения обратной связи (сигнал подается непосредственно на неинвертирующий вход ОУ, а к инвертирующему входу подводится напряжение обратной связи с выхода ОУ). Поскольку напряжение между входами равно нулю, то на инвертирующем входе напряжение равно ![]() таким образом, коэффициент усиления определяется формулой ![]() В частном случае при R2 =0 и любом значении R1 (кроме нуля) получают повторитель напряжения с коэффициентом передачи К=1. Входное сопротивление неинвертирующего усилителя определяется двумя параллельно включенными сопротивлениями: входным сопротивлением ОУ для синфазного сигнала rвх.сф и эквивалентным сопротивлением rэкв rвх н = rвх.сф || rэкв, rэкв. = rвх.диф ![]() Где ![]() Выходное сопротивление rвых инвертирующего и неинвертирующего усилителей одинаково. r´вых=( rвых)/(Кβ+1) (15) Частотные свойства инвертирующего и неинвертирующего усилителей определяются динамическими свойствами ОУ. Передаточная функция и частотная характеристика имеют вид К(р)=К/(1+р*τОУ); К(ώ)=К/(1+j*ώ*τОУ) , (16) где К – коэффициент усиления ОУ на низких частотах (единицы герц), р – оператор Лапласа, ώ – частота сигнала, τОУ – постоянная времени ОУ. Для инвертирующего усилителя имеем согласно (10,16) Кинв (ώ)= - R2/[R1*(1+j*ώ*τОУ)] (17) а для неинвертирующего, согласно (10, 16), Кнеинв(ώ)=[(R2/R1)+1] /(1+j*ώ*τОУ) (18) Формулы (17, 18) справедливы для работы усилителей в линейном режиме. ЗАДАНИЕ Проанализировать работу инвертирующего усилителя, схема которого приведена на рис. 9 ![]() Рис. 9. Схема инвертирующего усилителя. (R1= 3 k Oм, R2= 33 k Oм, R3= 3 k Oм, Rбалл.= 10 k Oм).
Пояснения к схеме Источник входного сигнала напряжения – генератор синусоидальных сигналов (типа ГЗ-112/1, Г6-34). Величины Uвх и Uвых измеряются ламповым вольтметром (типа В3-38). Сопротивление обратной связи измеряется омметром (типа В7-26) между точками А и В (рис. 9). Для контроля формы выходного сигнала вместо вольтметра подключается осциллограф. Напряжение питания ИС К140УД16 равно ±20 В. Литература
Операционный усилитель (Лабораторная работа по курсу «Физические основы микроэлектроники») Составители: Федосеева Нина Васильевна Планкина Светлана Михайловна Компьютерная верстка Балакиной М. В. _____________________________________________________________________________ Подписано к печати _________________ Формат 60x84 1/16 Печать офсетная. Бумага _______ Усл. печ. лист _________ Тираж 150 экз. Заказ _________ _____________________________________________________________________________ Нижегородский государственный университет имени Н. И. Лобачевского, 603950, ГСП-20, Н. Новгород, пр. Гагарина, 23 _____________________________________________________________________________Типография ННГУ, 603000, Н. Новгород, ул. Б. Покровская, 37 _____________________________________________________________________________ |