Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве




НазваниеОдобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве
страница4/9
Дата07.09.2012
Размер1.31 Mb.
ТипДокументы
1   2   3   4   5   6   7   8   9
), аномалии которого связаны с изменением плотности пород. Отличительная особенность метода при инженерно-геологических изысканиях заключается в производстве наземных наблюдений на ограниченных площадках с целью поиска грунтовых неоднородностей. Наблюдения выполняются чувствительными высокоточными гравиметрами с применением методик регистрации и обработки, позволяющих оценить локальную аномалию с точностью несколько микрогал (). В ряде случаев для большей дифференциации изучаемой среды возможно использование вторых производных силы тяжести (), что на практике достигается разновысотными наблюдениями с помощью специальной вышки.

5.4.2. По результатам профильной или площадной съемок, выполняемых рейсами, начинающимися и заканчивающимися на опорных пунктах, после введения всех необходимых поправок строятся графики или карты аномалий силы тяжести в редукции Буге ().

Интерпретация гравиметрии, при которой анализируются графики и карты аномалий поля силы тяжести, производится на качественном и количественном уровнях. В последнем случае на основе априорной геоплотностной модели изучаемой среды, базирующейся на информации о плотности пород и форме объекта, определяют его геометрические и плотностные характеристики. Кроме того, при проведении режимных наблюдений, выполняемых на закрепленных пунктах, высокоточная гравиразведка позволяет обнаруживать активные разрывные структуры.

Современная точность гравиметров позволяет фиксировать в верхней части разреза (до глубины 10 м) неоднородности, отличающиеся друг от друга по плотности на 0,02 - 0,03 г/см3.


5.5. Ядерно-физические методы


5.5.1. Ядерно-физические методы (радиоизотопные) базируются на существовании связей ядерных свойств пород с их плотностью, влажностью и глинистостью. Наиболее широко используются: гамма-гамма метод (ГГМ) определения плотности, нейтрон-нейтронный метод (ННМ) определения влажности и метод естественной радиоактивности для определения глинистости, как правило, в модификации скважинного и пенетрационного каротажа. Работы первыми двумя методами требуют использования искусственных радиоактивных источников.

5.5.2. ГГМ основан на рассеянии и ослаблении гамма-излучения на электронах атомов вещества, пронизываемого гамма-излучением. Источником гамма-квантов является цезий-137. Используются два способа: просвечивания (метод ослабления первичного гамма-излучения) и метод рассеянного первичного излучения. В обоих случаях измеряется плотность потока, или интенсивность (прошедших или рассеянных) гамма-квантов. Плотность определяется пересчетом по градуировочной зависимости в соответствии с ГОСТ 23061, регламентирующим выполнение градуировки.

5.5.3. ННМ основан на эффекте замедления быстрых нейтронов на атомах водорода и заключается в регистрации потока замедленных надтепловых и тепловых нейтронов. В методе используется плутониево-бериллиевый источник быстрых нейтронов и гелиевый или сцинтилляционный счетчик в качестве детектора медленных нейтронов. Методика, требования к соблюдению мер безопасности при работе и к градуировке приборов регламентируются ГОСТ 23061.

5.5.4. Метод естественной радиоактивности для определения глинистости дисперсных пород основан на зависимости естественного гамма-излучения от содержания глинистой фракции в породах. Для расчета содержания глинистой фракции используются корреляционные связи интенсивности естественного гамма-излучения с величиной . Естественная радиоактивность измеряется в соответствии с ГОСТ 25260*.

5.5.5. Метод протонного магнитного резонанса (ПМР) основан на возбуждении осциллирующего суммарного магнитного момента протонов и последующего детектирования электромагнитного поля, создаваемого этим осциллирующим магнитным моментом. В процессе работы антенной больших размеров создается импульсное магнитное поле внутри исследуемого объема. Частота заполнения импульса выбирается равной частоте прецессии магнитных моментов протонов вокруг магнитного поля Земли. Измерение наведенного прецессирующего магнитного момента после окончания действия возбуждающего магнитного поля осуществляется той же антенной. Основным носителем протонов в грунте является вода, поэтому метод рассчитан на детектирование воды.

Сигналы от различных слоев воды, различающихся по глубине и времени релаксации, складываются друг с другом в интегральном выражении. Распределение влажности по глубине определяется специальной обработкой получаемых материалов. Метод позволяет оценивать количество воды в пределах цилиндра глубиной D и диаметром 2D, где D - диаметр антенны.


5.6. Газово-эманационные методы


5.6.1. Газово-эманационные методы используются для определения уровня содержания радиоактивных газов - радона, торона и их соотношения, а также содержания газов в подпочвенном воздухе. В зависимости от стадии проектирования и задач инженерных изысканий проводится профильная или площадная съемка в модификации эманационных (радон-тороновых) или совместных (газово-эманационных) измерений. Отбор проб подпочвенного воздуха в зависимости от масштаба съемки и стадии (этапа) проектирования выполняется по сетке от 5 м х 5 м до 20 м х 20 м.

5.6.2. На основе анализа материалов газово-эманационной съемки, рассматриваемых в совокупности с геологическими и другими геофизическими данными, проводится структурно-геодинамическое картирование. Выделяются устойчивые блоки пород, геодинамические зоны с различным уровнем активности, связанной с разрывной тектоникой, трещиноватостью и участками перераспределения напряжений в массиве пород и грунтов, обусловленными протекающими естественными геологическими процессами и техногенной нагрузкой.

5.6.3. Газово-эманационная съемка может проводиться в режиме повторения измерений с выбранными периодами с целью мониторинга отслеживаемых процессов.


5.7. Термометрия


5.7.1. Термометрия основана на изучении температурного поля грунтов. Информация, полученная с ее помощью, используется при интерпретации геофизических данных (особенно в районах распространения мерзлых грунтов, где ее применение является обязательным). Кроме того, результаты измерения температуры в грунтовом массиве или в толще воды могут использоваться для решения инженерно-геологических и гидрогеологических задач, таких, как:

получение температурных данных для выбора типов фундаментов и выработки рекомендаций по выбору принципа использования многолетнемерзлых грунтов в качестве оснований фундаментов;

выявление зон воздействия термальных вод;

выявление зон нарушения режима подземных вод за счет утечек из водонесущих коммуникаций;

обнаружение мест протекания и действия физико-химических процессов, влияющих на загрязнение геологической среды;

оценка и прогноз устойчивости территорий освоения.

5.7.2. Термометрия осуществляется как полевыми, так и лабораторными методами.

Полевые измерения следует выполнять в соответствии с ГОСТ 25358. Измерения температуры должны выполняться в заранее подготовленных и выстоянных скважинах. Для измерения температуры грунтов не допускается использование скважин, заполненных водой или другой жидкостью.

При термометрии используются термометры любого типа (термометры расширения, термоэлектрические приборы, термометры сопротивления - металлические или полупроводниковые приборы), имеющие следующую инструментальную погрешность:

+/- 0,1 °С в диапазоне температур +/- 3 °С;

+/- 0,2 °С в диапазонах температур +3 - +10 °С и -3 - -10 °С;

+/- 0,3 °С в диапазонах температур свыше +10 °С и ниже -10 °С.

Результаты термометрии следует оформлять в табличной форме в виде сводной ведомости и в виде графиков распределения температуры по глубине по каждой скважине при одноразовых измерениях или в виде графиков термоизоплет (в координатах глубина и время) для режимных измерений по отдельным скважинам. Для однократных измерений по ряду скважин строятся графики изотерм (в координатах глубина и расстояние между скважинами). Графики изотерм, как правило, следует совмещать с геологическим разрезом, на котором показываются границы раздела талых и мерзлых грунтов, полученные по результатам инженерно-геологической и геофизической разведки, с указанием времени проведения этих работ.


5.8. Сопутствующие методы


5.8.1. Кавернометрия выполняется для измерения фактического диаметра скважин, который может быть как больше номинального (при проходке рыхлых песков, сильнотрещиноватых пород, кавернозных известняков и т.п.), так и меньше номинального (в интервале проходки пластичных глинистых грунтов).

Диаметр скважины измеряется с помощью каверномеров, оценивающих средний диаметр скважины, и каверномеров-профилемеров, определяющих форму сечения скважины на разных участках. Кавернометрическая аппаратура выпускается в виде отдельных приборов и в комплексе с каротажными приборами и станциями. Перед началом измерений кавернометрическая аппаратура должна проходить градуировку. В процессе измерения диаметра скважины записывается кавернограмма, обычно регистрируемая в масштабе глубин 1:200 и 1:500. Масштаб записи диаметра чаще выбирается 5 см/см, и при детальных исследованиях - 1 - 2 см/см.

В геофизике данные кавернометрии используются для интерпретации материалов БКЗ и радиоактивного каротажа.

5.8.2. Инклинометрия выполняется для измерения искривления скважины с целью контроля за смещением оси скважины от заданного направления. Искривление скважины определяется по двум углам: зенитному углу отклонения скважины от вертикали и азимуту вертикальной плоскости, в которой лежит ось скважины. Измерение угла и азимута искривления скважины производится с помощью инклинометров двух типов. Наиболее распространены инклинометры с дистанционным электрическим измерением, основой которых являются отвес и магнитная стрелка. Второй тип - это гироскопические инклинометры, в которых применены гироскопы с тремя степенями свободы.

По результатам измерения угла и азимута искривления скважины строится инклинограмма - проекция оси скважины на горизонтальную плоскость, выполненная последовательно по отдельным интервалам, как правило, в масштабе 1:200.

Инклинометрия в инженерной геофизике применяется как вспомогательный метод при производстве скважинных измерений. Инклинометрия используется для точного определения расстояния между скважинами при сейсмическом, акустическом и радиоволновом просвечиваниях, а также при наблюдениях за геодинамическими процессами (оползнями, сейсмогенными, криповыми и другими смещениями пород и грунтов).


6. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ЗАДАЧИ

И ГЕОФИЗИЧЕСКИЕ МЕТОДЫ ИХ РЕШЕНИЯ


6.1. Изучение в плане и разрезе положения

геологических границ


6.1.1. Изучение в плане и разрезе положения геологических границ протяженных и ограниченных по размерам геологических тел выполняется при решении практически всех задач инженерно-геологических изысканий. К задачам, связанным с изучением протяженных геологических границ, относятся положения, изложенные в пп. 6.1.2 - 6.1.8. Изучение местоположения, глубины залегания и формы локальных геологических неоднородностей связано с задачами, перечисленными в пп. 6.1.9 - 6.1.16.

6.1.2. Определение рельефа поверхности скальных и мощности перекрывающих их дисперсных грунтов. Определение основано на скачкообразном изменении (сверху вниз) скоростей продольных и поперечных волн, удельных электрических сопротивлений (УЭС) и плотности контактирующих пород.

Основными методами исследования являются: сейсморазведка методом преломленных (МПВ) и отраженных (МОВ) волн, электроразведка постоянным током в модификациях вертикальных электрических зондирований (ВЭЗ), частотных электромагнитных зондирований (ЧЭМЗ) и зондирований становлением поля (ЗСП). Все виды геофизического профилирования входят в состав вспомогательных методов. При наличии скважин в комплексе должны использоваться те виды каротажа, которые фиксируют указанные различия контактирующих грунтов по перечисленным выше свойствам. Данные каротажа, лабораторных и параметрических измерений на образцах, керне и на обнажениях используются для более точной интерпретации результатов наземных наблюдений.

6.1.3. Расчленение разреза скальных и дисперсных пород на слои различного литолого-петрографического состава основано на различии пород по их физическим свойствам. Основными геофизическими методами решения этой задачи являются: электроразведка (ВЭЗ, ЗСП), сейсморазведка (МПВ и МОВ), непрерывное сейсмическое профилирование (НСП) на акваториях, радиоволновое просвечивание (РВП) и большинство видов каротажа. Роль вспомогательных методов могут играть ЧЭМЗ, вертикальное сейсмическое профилирование (ВСП), методы вызванной поляризации (ВП) и РЛЗ.

6.1.4. Определение мощности коры выветривания (экзогенной трещиноватости). В основе решения задачи лежит отличие сохранных пород от выветрелых (трещиноватых) по удельным электрическим сопротивлениям, скоростям упругих волн и коэффициентам их затухания, а также поляризуемости и плотности.

Основными и вспомогательными методами являются практически те же, что и перечислены в п. 6.1.2.

6.1.5. Определение глубины залегания водоупоров и их целостности. Физические основы решения задачи и методы ее решения те же, что и в п. 6.1.3.

6.1.6. Определение глубины залегания подземных вод (уровня грунтовых вод) и мощности водоносных горизонтов в обломочных и трещиноватых скальных и полускальных породах. Основное отличие водонасыщенных пород от неводонасыщенных по электрическим свойствам проявляется в том, что первые характеризуются существенно более низкими значениями УЭС и более высокими значениями диэлектрической проницаемости. Наибольшие различия наблюдаются в песках, галечниках, трещиноватых скальных породах и значительно меньше - в дисперсных породах, содержащих большое количество частиц глинистой фракции, а также в нетрещиноватых скальных породах.

Скорости распространения продольных упругих волн на границе водонасыщенных и неводонасыщенных пород претерпевают скачкообразное увеличение, при этом скорости поперечных волн изменяются не так резко.

Основными геофизическими методами решения задачи являются: электроразведка постоянным током в модификациях вертикальных электрических зондирований методом сопротивления (ВЭЗ) и вызванных потенциалов (ВЭЗ ВП), сейсморазведка методом преломленных волн (МПВ), а также РЛЗ. Для количественных оценок содержания воды может быть использован метод протонного магнитного резонанса (ПМР).

6.1.7. Определение глубины залегания, мощности и распространения линз и горизонтов засоленных вод и криопэгов. Главной отличительной особенностью засоленных вод (растворов) является значительное понижение их УЭС при увеличении концентрации и незначительная изменчивость остальных характеристик.

Основным геофизическим методом решения этой задачи является ВЭЗ. В качестве вспомогательных методов используются ВЭЗ ВП, ЧЭМЗ, ЗС, РВП.

6.1.8. Определение в плане и разрезе положения границ мерзлых и немерзлых пород. Переход пород, содержащих в своем составе воду, в мерзлое состояние сопровождается скачкообразным увеличением их УЭС и скоростей упругих волн, величина которого тем больше, чем больше свободной воды содержится в породе.

Основными методами являются электроразведка методом сопротивлений в различных модификациях, частотные методы зондирования и профилирования (ЧЭМЗ, ДЭМП, ВЧЭП, НЭП, РВП, РЛЗ) и сейсморазведка (МПВ, СППБ, МОВ, ВСП). Вспомогательными являются метод вызванных потенциалов (ВЭЗ ВП), естественных потенциалов (ЕП), радиокип.

6.1.9. Определение глубины залегания и мощности внутригрунтовых льдов и льдов, залегающих с поверхности. Лед наряду с мерзлыми песками характеризуется большими значениями УЭС и скоростями упругих волн, меньшей плотностью и меньшей диэлектрической проницаемостью по сравнению с влагонасыщенными породами. В отличие от слабомагнитных глин лед практически немагнитен.

Основными методами исследования внутригрунтовых льдов являются те же методы, что и в п. 6.1.8. Возможность использования сейсморазведки МОВ обусловлена существованием отличия акустической жесткости льда от вмещающих пород. Вспомогательные методы - гравиразведка и магниторазведка - используются в случае достаточно крупных скоплений льда.

Основными методами определения мощности ледников и крупных наледей являются радиолокационное зондирование и сейсморазведка (МПВ и МОВ).

6.1.10. Выявление и оконтуривание зон повышенной трещиноватости, тектонических нарушений и активных разрывных структур. Основным способом наблюдений является профилирование. В качестве основных методов исследования используются: ЭП, ВЭЗ, МПВ, МОВ, ОГТ, ДЭМП, Г-Э, М, Г, а в качестве вспомогательных - ВСП, НСП, Кар, ЧЭМЗ, РЛЗ, ВЭЗ ВП, РВП, ЕИЭМПЗ.

6.1.11. Обнаружение и оконтуривание в плане и разрезе карстовых полостей и подземных выработок. Основными методами являются: ВЭЗ, ВИЭП, РВП, МПВ, ОГТ, СП, микрогравиразведка, РЛЗ. В качестве вспомогательных методов применяются Г-Э, ЕП, резистивиметрия, МЗТ, ЕИЭМЗ, АЭ.

6.1.12. Обнаружение и оконтуривание в плане и разрезе отдельных ледяных тел различной морфологии (пластовых, повторно-жильных) и зон повышенной льдистости. Наряду с основными методами, аналогичными используемым при решении задач п. 6.1.9, в качестве вспомогательных используются МПП, РВП, высокоточная гравиразведка и, при наличии магнитной восприимчивости у вмещающих пород, - высокоточная магниторазведка.

6.1.13. Оконтуривание и определение мощности таликов, перелетков и мерзлых пород среди талых. Эти задачи решаются методами, перечисленными в п. 6.1.8 и базирующимися на тех же физических основах.

6.1.14. Определение в плане и разрезе положения границ загрязненных пород (в том числе радиоактивными веществами). Выбор методов осуществляется на основе априорного знания свойств пород, претерпевших изменения и степени изменений. Целесообразно выполнение специальных параметрических измерений. Выбранные методы в зависимости от конкретных задач используются в модификациях зондирования или профилирования. При загрязнении радиоактивными веществами основным методом является радиометрическая съемка.

6.1.15. Локализация мест разгрузки подземных и техногенных вод, мест фильтрации вод через земляные сооружения. Выход подземных вод на поверхность и все процессы фильтрации сопровождаются появлением естественных потенциалов, как правило, положительных в местах разгрузки.

Основными методами являются: резистивиметрия, ЕП, термометрия, ВЭЗ ВП, РВП, а вспомогательными - электропрофилирование, МПВ на продольных волнах.

6.1.16. Локализация мест коррозии или опасности коррозии подземных металлических сооружений (ПМС). Решение задачи локализации мест коррозии основано на появлении в этих местах аномальных электрических потенциалов электрохимического генезиса. Основным методом является профилирование или съемка методом ЕП.

Оценка коррозионной опасности в результате действия блуждающих токов и агрессивности вмещающей среды по отношению к стальным подземным сооружениям производится путем специальных измерений, выполняемых в соответствии с ГОСТ 9.602-89*. В основе метода лежит измерение разности потенциалов между эталоном из стали или самого ПМС и электродом сравнения.

Наличие блуждающих токов в земле определяется с помощью измерения разности потенциалов между двумя точками на поверхности земли при разносе измерительных электродов, равном 100 м, располагающихся в двух взаимноперпендикулярных направлениях через каждые 1000 м трассы. Замеры производятся через каждые 5 - 10 секунд в течение 10 - 15 минут.

6.1.17. Обнаружение и локализация в плане и разрезе отдельных технических объектов (инженерных коммуникаций, погребенных фундаментов и пр.). Выбор методов осуществляется на основе априорных знаний о свойствах искомого объекта. Наиболее информативными могут быть РЛЗ, микромагнитная съемка, ЕП, ДЭМП, ДИП.


6.2. Изучение состава, строения,

состояния и свойств грунтов


6.2.1. Изучение состава, строения, состояния и свойств грунтов выполняется параллельно с изучением геологического строения массива, но может являться и самостоятельной целью и выполняться по специально составленной программе.

6.2.2. Определение физико-механических характеристик грунтов по данным геофизических исследований следует производить на основе корреляционных зависимостей, установленных для определенных литологических разновидностей пород с учетом их региональных особенностей. При отсутствии корреляционных связей, полученных для грунтов изучаемого объекта (наиболее обоснованные оценки), могут быть использованы корреляционные зависимости для грунтов-аналогов (приближенные оценки). Примеры таких связей, полученных на основе обобщения данных экспериментальных исследований различных грунтов в лабораторных и натурных условиях, приведены в аналитической форме в Приложении Е и в графической форме в Приложениях Ж - Н.

6.2.3. При определении физико-механических свойств грунтов в массиве на основе использования корреляционных связей, установленных при изучении образцов, следует учитывать масштабный эффект для конкретной геологической среды.

6.2.4. Определение литолого-петрографического состава пород. Решение задачи основано на зависимости электрических, упругих и других физических свойствах пород, определяемых при геофизических исследованиях, от их литолого-петрографического состава (Приложения Ж, И). Установление зависимостей между геофизическими параметрами и литолого-петрографическими признаками состава грунтов проводится при использовании параметрических измерений в скважинах, горных выработках, на образцах и на обнажениях.

Основными геофизическими методами при решении задачи являются электроразведка на постоянном токе, ВЭЗ, ВЭЗ ВП, сейсморазведка МПВ на продольных и поперечных волнах. При наличии скважин используются ВСП, сейсмопросвечивание, различные виды каротажа.

6.2.5. Определение трещиноватости и пористости скальных пород. Решение задачи основано на различии скоростей распространения продольных и поперечных волн и электросопротивления в скальных породах при различной степени трещиноватости. С помощью сочетания сейсморазведки в наземном и скважинном вариантах с ультразвуковыми измерениями скоростей упругих волн в образцах (керне) скальных пород определяется общая пустотность (пористость) пород как в зоне аэрации, так и в зоне полного водонасыщения. Применение электроразведки требует установления корреляционных связей УЭС со степенью трещиноватости и пористости пород путем измерения электрических свойств пород в полевых условиях и в лаборатории на образцах.

Основными геофизическими методами при решении задачи являются наземная сейсморазведка МПВ на продольных и поперечных волнах, скважинная сейсморазведка методами ВСП и просвечивания между скважинами, УЗК, измерения скоростей упругих волн в образцах пород. Вспомогательным методом является электроразведка ВЭЗ и КВЭЗ.

6.2.6. Определение водно-физических свойств пород. Оценка коэффициента фильтрации дисперсных пород производится по корреляционным зависимостям между коэффициентом фильтрации пород и их удельным электрическим сопротивлением, а также поляризуемостью и диэлектрической проницаемостью, устанавливаемым для конкретных условий. В скальных породах такие зависимости устанавливаются между коэффициентом фильтрации и скоростью продольных волн.

6.2.7. Определение деформационных и прочностных свойств скальных пород. Задача решается, как правило, с помощью комплекса сейсмоакустических методов. Для определения статического модуля упругости, модуля деформации, предела прочности на одноосное сжатие используются установленные корреляционные зависимости между указанными параметрами, с одной стороны, и скоростями продольных и поперечных волн и динамическими модулями упругости - с другой (Приложение Е).

Скорости упругих волн и, следовательно, упругие модули (с использованием информации о плотности пород в массиве) определяются: в скважинах методами сейсмоакустического каротажа и просвечивания, ВСП, с поверхности - сейсморазведкой МПВ на продольных и поперечных волнах, в лаборатории - путем измерения скоростей ультразвуковых волн в образцах.

Исследования в широком диапазоне частот позволяют учитывать масштабный эффект и обоснованно осуществлять переход от параметров, полученных на малых объемах грунтов, к параметрам изучаемого массива.

6.2.8. Определение физических свойств дисперсных пород (плотности, влажности, пористости). Основными методами определения плотности и влажности дисперсных пород (в том числе мерзлых) являются радиоизотопные измерения. Вспомогательными методами являются сейсморазведочные и электроразведочные, результаты которых используются для определения искомых параметров грунта по установленным корреляционным зависимостям между плотностью, влажностью и пористостью, с одной стороны, и скоростями упругих волн и электросопротивлением - с другой (Приложения Е, Ж, И, Л).

В качестве основных методов используются каротажные методы ГГМ, ННМ, а в качестве косвенных - наземная и скважинная сейсморазведка на продольных и поперечных волнах (МПВ, ВСП, сейсмопросвечивание), а также электроразведка ВЭЗ, каротаж КС и РВП.

6.2.9. Определение прочностных и деформационных свойств дисперсных (талых и мерзлых) пород выполняется по установленным или уточненным и вновь устанавливаемым в процессе работ корреляционным зависимостям между указанными величинами и упругими параметрами: скоростями упругих волн, модулями упругости, сдвига, динамическим коэффициентом Пуассона (Приложения Е, М).

Скорости продольных и поперечных волн пород в полевых условиях определяются с помощью наблюдений с поверхности и во внутренних точках среды методами МПВ, ВСП, СП. В лабораторных условиях используются ультразвуковые измерения на образцах.

6.2.10. Изучение строения скальных массивов, состоящих из разновеликих зон, блоков и элементов и степени их неоднородности выполняется с помощью разночастотных сейсмоакустических методов, позволяющих определять скорости продольных и поперечных волн для различных по размерам блоков и элементов массива. Для количественной оценки неоднородности строятся так называемые масштабные кривые, отражающие взаимосвязь между скоростями упругих волн и изучаемыми размерами (линейными или объемными) среды.

Скорости продольных и поперечных волн в массиве и его частях определяются с помощью наблюдений с поверхности, во внутренних точках среды и на образцах методами МПВ, ВСП, СП на частотах от 50 - 100 Гц до 10 - 20 кГц, а также с помощью ультразвуковых исследований.

6.2.11. Изучение степени неоднородности массивов дисперсных пород проводится путем построения кривых распределения скоростей упругих волн и характеристик их поглощения, а также электросопротивлений в зависимости от масштаба изучаемой среды. Методы получения упругих и электрических параметров стандартные - МПВ, ВСП, сейсмопросвечивание, ВЭЗ, РВП.

6.2.12. Изучение напряженного состояния пород основано на взаимосвязи параметров упругих волн со значениями действующих напряжений в массиве и на зависимости уровня акустической и электромагнитной эмиссии от изменений напряженного состояния массива. При качественном изучении напряженного состояния скальных и дисперсных пород используются МПВ, ВСП, сейсмопросвечивание, измерение акустической и электромагнитной эмиссии. Количественная оценка напряжений в массиве пород определяется с помощью комплекса разночастотных сейсмоакустических методов при использовании установленных зависимостей скоростей упругих волн от давления.

6.2.13. Определение минерализации подземных вод и засоленности дисперсных пород производится с помощью методов резистивиметрии и электроразведки ВЭЗ, каротажа КС и РВП. Полученные этими методами значения УЭС используются для определения минерализации подземных вод, засоленности дисперсных талых и мерзлых пород по зависимостям, приведенным в Приложении К.

6.2.14. Определение льдистости дисперсных пород проводится по установленным корреляционным зависимостям между объемной льдистостью, с одной стороны, и скоростями упругих волн и электросопротивлением - с другой, полученными для различных видов дисперсных грунтов (Приложение Л). Скорости продольных волн и электросопротивление пород для интерпретации результатов полевых работ определяют с помощью ультразвукового каротажа и каротажа КС и РВП.

6.2.15. Оценка криогенного строения дисперсных пород производится по результатам определений упругих волн и электросопротивлений, измеренных в горизонтальной и вертикальной плоскостях. С помощью номограммы (Приложение Н) оцениваются элементы криогенного строения. Скорости продольных волн для этой цели получают с помощью комплекса скважинных методов: ультразвуковой каротаж (УЗК) и межскважинное ультразвуковое просвечивание (МП). Для получения аналогичных значений электросопротивлений используется комплекс из наземного метода ВЭЗ и скважинного метода КС.

6.2.16. Определение коррозионной агрессивности (КА) грунтов и подземных вод выполняется с соблюдением требований ГОСТ 9.602-89. КА грунта по отношению к стали характеризуется значениями удельного электрического сопротивления (УЭС) грунта и средней плотностью катодного тока (
1   2   3   4   5   6   7   8   9

Похожие:

Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве iconОдобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве
Нииис" Госстроя России при участии Геологического факультета мгу, фгуп "Противокарстовая и береговая защита", мгсу, ОАО "Всероссийский...
Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве iconОдобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве
Нииис" Госстроя России при участии Геологического факультета мгу, фгуп "Противокарстовая и береговая защита", мгсу, ОАО "Всероссийский...
Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве iconОдобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112
Разработан Производственным и научно-исследовательским институтом по инженерным изысканиям в строительстве (фгуп "пнииис") Госстроя...
Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве iconОдобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве
Л. И. Барышников), ОАО "Гипроречтранс" (инж. В. В. Рудометкин, инж. М. И. Серебряков), Проблемная лаборатория эрозии почв и русловых...
Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве iconОдобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве
Л. И. Барышников), ОАО "Гипроречтранс" (инж. В. В. Рудометкин, инж. М. И. Серебряков), Проблемная лаборатория эрозии почв и русловых...
Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве iconОдобрен Письмом Госстроя РФ от 3 ноября 1999 г. N 5-11/140 система нормативных документов в строительстве
Госстроя России (инж. Маров Э. А., д г м н. Минкин М. А., инж. Шилин Н. А.), Нии оснований им. Н. М. Герсеванова Госстроя России...
Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве iconОдобрен Письмом Госстроя РФ от 8 августа 2003 г. N лб-95 система нормативных документов в строительстве
Фгуп пнииис госстроя России, ООО "нпц ингеодин", мгсу при участии кафедры инженерной геологии мггру, фгуп "Фундаментпроект", ОАО...
Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве iconСистема нормативных документов в строительстве указатель
Указатель действующих нормативных документов является единственным официальным изданием, информирующим о состоянии нормативных документов...
Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве iconСистема нормативных документов в строительстве строительные нормы и правила российской федерации
Разработаны Государственным предприятием "Центр методологии, нормирования и стандартизации в строительстве" Госстроя России с участием...
Одобрен Письмом Госстроя РФ от 17 февраля 2004 г. N 9-20/112 система нормативных документов в строительстве iconСистема нормативных документов в строительстве строительные нормы и правила российской федерации
Разработаны Государственным предприятием "Центр методологии, нормирования и стандартизации в строительстве" Госстроя России с участием...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница