Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007




НазваниеСергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007
страница11/52
Дата22.11.2012
Размер7.27 Mb.
ТипДокументы
1   ...   7   8   9   10   11   12   13   14   ...   52

Волоконно оптические линии связи


История световой связи началась еще в доисторические времена, когда дозорные сигнальными кострами предупреждали своих о приближении врага. В начале XIX столетия Наполеон вложил немало средств в «зеркальный телеграф» вдоль побережья Атлантики. Таким образом, император хотел получать оперативную информацию о нарушителях «континентальной блокады», чтобы беспощадно карать этих пособников англичан.

Но изобретение радиосвязи, казалось, похоронило саму идею световой связи. Однако постепенно выяснилось, что при всех достоинствах традиционных видов связи каждому из них присущ и целый ряд недостатков, которые становятся все более чувствительными по мере нарастания объемов передаваемой информации. Несмотря на новейшие технологии, позволяющие значительно уплотнить передаваемую по кабелю информацию, магистральные телефонные линии все равно часто оказываются перегруженными. Примерно то же можно сказать о радио и телевидении, в которых информационные сигналы переносятся с помощью электромагнитных волн: все возрастающее количество телеканалов и радиостанций, вещательных и служебных, привело к возникновению помех, к ситуации, получившей название «тесноты в эфире». Это стало одним из толчков к освоению все более коротковолновых диапазонов радиоволн.

Еще один недостаток традиционных видов связи состоит в том, что для передачи информации вообще невыгодно пользоваться волнами, излучаемыми в свободное пространство. Ведь энергия, приходящаяся на какую то определенную площадь фронта такой волны, убывает по мере увеличения фронта волны. Для сферической волны, то есть такой, которая распространяется равномерно во все стороны от источника, ослабление обратно пропорционально квадрату расстояния от источника волны до приемника.

Эра современной оптической связи началась в 1960 году после создания первого лазера. Изобретение лазеров вообще породило надежду на быстрое и легкое преодоление проблем «эфирной тесноты» Появилась надежда на то, что использование микронных волн видимого света для нужд связи вместо сантиметровых и миллиметровых радиоволн позволит почти беспредельно расширить объемы передаваемой информации.

Увы, уже первые опыты развеяли радужные иллюзии. Выяснилось, что земная атмосфера очень активно поглощает и рассеивает оптическое излучение. А потому лазеры могут использоваться для нужд связи лишь на очень небольшом расстоянии: в среднем не более километра.

Так обстояли дела до тех пор, пока в 1966 году двое японских ученых Као и Хокэма не предложили использовать для передачи светового сигнала длинные стеклянные волокна, подобные тем, которые уже использовались в эндоскопии и других областях.

Согласно законам оптики, если направить световой луч из более плотной среды в менее плотную, то значительная часть его отражается обратно от границы двух сред. При этом, чем меньше угол падения луча, тем большая часть светового потока окажется отраженной. Путем эксперимента можно подобрать такой пологий угол, при котором отражается весь свет и лишь ничтожная его часть попадает из более плотной среды в менее плотную. Свет при этом оказывается словно заключенным в плотной среде и распространяется в ней, повторяя все ее изгибы. Лучи, идущие под малым углом к границе двух сред, полностью отражаются от нее. Таким образом, оболочка прочно удерживает их, обеспечивая светонепроницаемый канал для передачи сигнала практически со скоростью света.

Будь световод идеальным, изготовленным из абсолютно прозрачного и однородного материала, световые волны должны распространяться не ослабевая. На самом деле практически все реальные световоды достаточно сильно поглощают и рассеивают электромагнитные волны из за своей непрозрачности и неоднородности.

Понадобилось целое десятилетие для того, чтобы создать лабораторные образцы волоконных световодов, способных передать на один километр один процент введенной в них мощности света. Следующей задачей было изготовить из такого волокна световодный кабель, пригодный для практического применения, разработать источники и приемники излучения.

Радикальное изменение ситуации было связано с созданием двухслойных световодов. Такие световоды состояли из световодной жилы, заключенной в прозрачную оболочку, показатель преломления которой был меньше, чем показатель преломления жилы. Если толщина прозрачной оболочки превосходит несколько длин волн передаваемого светового сигнала, то ни пыль, ни свойства среды вне этой оболочки не оказывают существенного влияния на процесс распространения световой волны в двухслойном световоде. Подобные световоды можно покрывать полимерной оболочкой и превращать их в световедущий кабель, пригодный для практического применения. Но для этого необходимо создать совершенную границу между жилой и прозрачной оболочкой. Наиболее простая технология изготовления световода состоит в том, что стеклянный стержень сердцевина вставляется в плотно подогнанную стеклянную трубку с меньшим показателем преломления. Затем эта конструкция нагревается.

В 1970 году фирма «Корнинг гласс» впервые разработала стеклянные световоды, пригодные для передачи светового сигнала на большие расстояния. А к середине 1970 х годов были созданы световоды из сверхчистого кварцевого стекла, интенсивность света в которых уменьшалась вдвое лишь на расстоянии шести километров.

Кроме световода волоконно оптическая система связи включает в себя блок оптического передатчика (в котором электрические сигналы, поступающие на вход системы, преобразуются в оптические импульсы) и блок оптического приемника (принимающего оптические сигналы и преобразующего их в электрические импульсы). Если линия имеет большую протяженность, на ней действуют также ретрансляторы – они принимают и усиливают передаваемые сигналы. В устройствах для ввода излучения в волоконные световоды широко применяются линзы, которые имеют очень маленький диаметр и фокусное расстояние порядка сотен и десятков микрон. Источники излучения могут быть двух типов: лазеры и светоизлучающие диоды, которые работают как генераторы несущей волны. Передаваемый сигнал модулируется и накладывается на несущую волну точно так же, как это происходит в радиотехнике.

В марте 2000 года исполнилось 70 лет академику Жоресу Алферову. В этом же году Алферов получил Нобелевскую премию. Именно благодаря российскому ученому, создавшему в 1967 году первые полупроводниковые гетеролазеры, работоспособные при комнатной температуре, стали явью две важнейшие информационные технологии: лазерные диски памяти и волоконно оптические линии связи. Ведь без передатчика световоду ничего не передашь.

Самый эффективный способ передачи – в цифровом виде. При этом опять таки совершенно неважно, какая информация передается таким образом: телефонный разговор, печатный текст, музыка, телевизионная передача или изображение картины. Первым шагом для преобразования сигнала в цифровую форму является определение его значений через интервалы времени – этот процесс называется дискретизацией сигнала по времени.

Выяснилось, что если временной интервал по крайней мере в два раза меньше наивысшей частоты, содержащейся в спектре передаваемого сигнала, то этот сигнал может быть в дальнейшем восстановлен из дискретной формы без всяких искажений. То есть вместо непрерывного сигнала без ущерба для передаваемой информации можно подавать набор очень коротких импульсов, отличающихся друг от друга только амплитудой.

Поскольку все они имеют одинаковый вид и сдвинуты друг относительно друга на один и тот же временный интервал, то можно передавать не весь сигнал, а лишь значение его амплитуды. То есть значение каждого импульса можно интерпретировать как число в двоичном коде. Значение этого числа и передается по линии связи. Поскольку для передачи каждого двоичного числа необходимы всего две цифры – 0 и 1, то задача очень упрощается: 0 соответствует отсутствию сигнала, а 1 – его наличию. Восстановление переданного сигнала происходит в обратном порядке. Подача сигнала в цифровом виде очень удобна, так как фактически исключает всякие искажения и помехи.

Достоинства и преимущества ВОЛС очевидны. Прежде всего, волоконно оптические кабели очень устойчивы к помехам и имеют малый вес. Но самое важное их достоинство состоит в том, что они имеют огромную пропускную способность – в единицу времени через них можно пропускать такие громадные объемы информации, какие невозможно передать ни одним из известных сейчас способов связи.

В 1988 году была введена в действие первая трансатлантическая ВОЛС ТАТ 8. К 1998 году ее пропускную способность довели до 600000 одновременных телефонных разговоров против 36 у первой проводной линии, проложенной там же в 1956 году.

В 2000 году введена в эксплуатацию волоконно оптическая линия связи «Москва – Санкт Петербург – Стокгольм», давшая России еще один доступ в Интернет. «Огромную пропускную способность нового канала, – пишет в журнале «Эхо планеты» Юрий Носов, – (2,4 Гбит/с, то есть по миллиону простых "электронных писем" ежеминутно) провайдерам еще предстоит "переварить", а в кулуарах симпозиума лишь снисходительное пожимание плечами: "Всего то?" Ученых понять можно: только что им был представлен новый созданный в Физтехе лазер, с которым, по утверждению докладчика, вполне достижима «терабитная» скорость передачи информации (напомним, 1 Тбит = 1000 Гбит, так что речь ведется об увеличении пропускной способности в сотни раз!). Это достигается не только повышением быстродействия лазера, но и использованием технологии так называемого волнового (или спектрального) уплотнения. Технология основана на том, что по одному волокну передаются одновременно несколько десятков различных световых потоков.

Заметим, однако, что специалистов все это не очень то волнует, и вот почему. Во первых, о возможности достижения «терабитной» скорости было заявлено еще лет 10 тому назад, а во вторых, сами дальние, или магистральные, линии уже не в фокусе всеобщего интереса. Их напрокладывали столько, что в США, например, от любого дома до ближайшей магистрали не более десятка другого километров. Поэтому внимание переключается на то, с чего все и начиналось, – на локальные сети, на короткие и очень короткие ВОЛС. Только теперь это будет доведено до абсолюта – оптоволокно в каждый дом! Полная «цифровизация» информации станет явью, и главная проблема, которую теперь предстоит решить ученым и технологам – это создание экономичного, сверхнадежного и очень дешевого, «народного» лазера».

Число пользователей ВОЛС в системе Интернет превысило миллиард человек. И можно смело утверждать, что без волоконно оптических линий связи сегодня не было бы и Интернета. Большая часть того, о чем здесь говорилось, будет реализовано в ближайшие годы, по крайней мере, в развитых странах. Но исследования в области ВОЛС продолжаются.

Юрий Носов пишет: «Связь по волокну называют оптической, а не световой (хотя волокна нередко называют световодами или светопроводами), и вот почему. Еще в самом начале исследований было установлено, что, чем короче длина волны света, тем сильнее он поглощается в волокне. Поэтому, начав с «красного» света и не получив удовлетворительных результатов, перешли «за» красный, в область невидимого инфракрасного излучения, но, как и свет, относящегося к оптическому, и вскоре остановились на излучении с длиной волны около 1,5 мкм (микронов). Под такой диапазон разработали специальные гетеролазеры, именно на них и основываются современные ВОЛС. Если инфракрасный луч проходит в волокне с небольшим затуханием 10 км, то красный свет (длина волны 0,65 мкм) пройдет лишь 0,5 км, а синий (0,43 мкм) и вообще меньше 50 м.

А что если пойти еще дальше в инфракрасную область? Оказалось, там потери излучения опять возрастают – таковы особенности кварца. Но ведь на кварце свет клином не сошелся. И действительно, синтезировали такие составы, которые почти без поглощения могут пропустить излучение на 1000 км! Но для этого надо перейти к длинам волн около 3 мкм, а это фактически уже область теплового излучения. И если бы удалось создать волокна и лазеры на этот диапазон длин волн, то можно было бы не гнать горячую воду от ТЭЦ, а передавать «сухое» тепло по волокнам прямо в квартиры, при этом практически без потерь и без осточертевших зимних аварий из за разрыва труб. Это вам не ВОЛС с виртуальным миром их потоков информации, это уже "совсем другое кино". Посмотрим ли мы его?»


Навигационная система GPS


С помощью приемника GPS определяется не только местоположение движущегося объекта, но и скорость его движения, пройденное расстояние, рассчитываются расстояние, и направление до намеченного пункта, время прибытия и отклонения от заданного курса.

Сегодня уже очевидно: в первом десятилетии нового тысячелетия спутниковые системы навигации станут основными средствами местоопределения для наземных, воздушных и морских объектов. Ведь при современной технологии приемники GPS имеют малые размеры, надежны и дешевы, так что они становятся все более доступными для рядового покупателя.

Сначала появилась Система космической радионавигации НАВСТАР (NAVSTAR). Навигационная система на основе временных и дальномерных измерений в США создавалась в первую очередь для координатно временного обеспечения войск и военной техники.

Первый американский навигационный спутник был запущен в феврале 1978 года, а активное внедрение спутниковых навигационных методов в гражданскую жизнь началось позднее. До 1983 года навигационная система использовалась исключительно военными. Однако, после того как над Татарским проливом был сбит «Боинг 747», систему открыли для гражданского использования. Тогда, собственно, и появилась аббревиатура GPS (Global Positioning System) – Система глобального позиционирования. Термин «позиционирование» – более широкий по отношению к термину «определение местоположения». Позиционирование помимо определения координат включает в себя и определение вектора скорости движущегося объекта.

Правительство США затратило на создание этой системы более десяти миллиардов долларов и продолжает тратить средства на ее дальнейшее развитие и поддержку.

Спутниковая навигационная система вместо геодезических знаков и радиомаяков использует спутники, излучающие специальные сигналы. Текущее местоположение спутников на орбите хорошо известно. Спутники постоянно передают информацию о своем местоположении. Расстояние до них определяется путем измерения промежутка времени, который требуется радиосигналу, чтобы дойти от спутника до радиоприемника, и умножением его на скорость распространения электромагнитной волны. В результате синхронизации часов спутников, в которых используются атомные эталонные генераторы частоты, и приемников обеспечивается точное измерение расстояний до спутников.

«Для вычисления координат места на Земле, – пишет в журнале «Радио» В. Курышев, – необходимо знать расстояния до спутников и местонахождение каждого из них в космическом пространстве. Спутники GPS находятся на высоких орбитах (20000 км), и их координаты можно прогнозировать с большой точностью. Станции слежения министерства обороны США регулярно определяют даже самые незначительные изменения в орбитах, и эти данные передают на спутники. Измеренные расстояния до спутников называются псевдодальностями, так как в их определении присутствует некоторая неопределенность. Дело в том, что ионосфера и тропосфера Земли вызывают задержки спутниковых сигналов, внося погрешность в расчет расстояния. Есть и другие источники ошибок – в частности, вычислительные погрешности бортовых компьютеров, электрические шумы приемников, многолучевость распространения радиоволн. Неудачное взаимное расположение спутников на небосводе также может привести к соответствующему увеличению суммарной погрешности местоопределения.

Для определения расстояний спутники и приемники генерируют сложные двоичные кодовые последовательности, называемые псевдослучайным кодом. Определение времени распространения сигнала осуществляется путем сравнения запаздывания псевдослучайного кода спутника по отношению к такому же коду приемника. Каждый спутник имеет определенные, свои собственные два псевдослучайных кода. Чтобы различить дальномерные коды и информационные сообщения разных спутников, в приемнике производится вызов соответствующих кодов. Псевдослучайные дальномерные коды и информационные сообщения спутников пускают передачу сообщений со спутников одновременно, на одной частоте, без взаимных помех. Мощность излучения спутников и взаимовлияние сигналов от спутников незначительно.

Точность измерений можно повысить, если использовать дифференциальные измерения. Опорная наземная станция с точно известными геодезическими координатами вычисляет разность между координатами с его приемника и ее фактическими координатами. Разность в форме поправки передается потребителям по радиоканалам для коррекции показаний приемников. Эти поправки устраняют значительную часть ошибок в измерениях расстояний и местоопределения. Расчет координат в приеме в индикатор выполняется автоматически и предоставляется возможность использовать информацию в удобной картографической форме».

GPS состоит из 3 сегментов: космического, сегмента контроля и пользовательского сегмента.

Космический сегмент состоит из 24 х спутников, которые находятся на 6 орбитах (по четыре на каждой) на высоте примерно 20350 километров. В настоящее время в работе находятся 28 спутников. «Лишние» спутники используются для страховки и замены выходящих из строя сателлитов.

Сегмент контроля – это станции наблюдения, расположенные в нескольких точках земного шара, и главная контрольная станция. Ведущая станция расположена в объединенном центре управления космическими системами военного назначения в городе Колорадо Спрингс. Центр собирает и обрабатывает данные со станций слежения, вычисляет и предсказывает эфемериды спутников, а также параметры хода часов. Станции наблюдения следят за спутниками, записывая всю информацию об их движении, которая передается на главную командную станцию для корректировки орбит и навигационной информации.

Пользовательский сегмент включает оборудование пользователей, позволяющее определять координаты, скорость и время.

Основной потребитель информации системы GPS – министерство обороны США. Приемники системы GPS введены на всех боевых и транспортных самолетах и кораблях, а также в системы наведения высокоточных крылатых ракет и в системы наведения новых управляемых авиабомб США. Это означает, что американские военные могут планировать нанесение высокоточных ракетных ударов с расстояния тысяча километров не только по зданиям и сооружениям, но и в определенное окно. Причем эти удары могут быть нанесены с подводных лодок и с воздуха.

Подобная система есть и в России: в ответ на создание американцами НАВСТАР, в СССР была создана собственная глобальная навигационная спутниковая система – ГЛОНАСС.

Первый отечественный навигационный спутник «Космос 192» был выведен на орбиту 27 ноября 1967 года, а в 1979 году была создана навигационная система первого поколения «Цикада», в составе которой было 4 низкоорбитальных спутника. Затем, в 1982 году, были запущены первые спутники новой системы навигации ГЛОНАСС. До штатного же состояния количество спутников ГЛОНАСС было доведено в 1996 году.

Спутники ГЛОНАСС находятся на высоте примерно 19100 километров. В отличие от спутников НАВСТАР спутники ГЛОНАСС размещены на трех орбитах, соответственно по 8 спутников на каждой. Период обращения спутников – 11 часов 15 минут.

Так же как и GPS, ГЛОНАСС используется как военными, так и гражданскими пользователями. Однако и тех и других пользователей у системы не так много: фактически она не развивается с 1998 года. С каждым годом группировка спутников уменьшается. Причина банальна и, можно сказать, стандартна для большинства отечественных разработок: у государства нет денег, а законодательная база, регулирующая использование систем спутниковой навигации в России, не позволяет системе развиваться за счет гражданских потребителей.

Перспективы развития ГЛОНАСС зависят от позиции государства. Ему предстоит решить, открывать ли эту систему навигации для широкого круга потребителей или нет. Российские ученые направили в феврале 2000 года Владимиру Путину (тогда еще исполнявшему обязанности президента России) открытое письмо, в котором изложили свой вариант развития ГЛОНАСС: «Чтобы предотвратить утечку средств у физических лиц в казну США и Европы и постоянно поддерживать свою космическую программу, России необходимо: во первых, в срочном порядке снять неоправданные режимные ограничения на использование бытовых спутниковых приемников определения координат; во вторых правительственным постановлением декретировать отечественную общеземную геодезическую систему координат "Параметры Земли 1990 года" (ПЗ 90) и спутниковую навигационную систему ГЛОНАСС для массового применения во всем пространстве России и стран мирового сообщества…» Пока что президент не принял никакого решения.

В отличие от российской системы, GPS постоянно развивалась в сторону открытости для гражданских потребителей. До 1 мая 2000 года доступ в GPS для них был выборочным, что ухудшало точность определения местоположения до сотен метров. При этом точность для военных составляла 5 20 метров. Однако 1 мая президент Клинтон объявил о прекращении снижения точности GPS сигналов для гражданских пользователей. «Это будет означать, что гражданские потребители GPS будут способны определять точечное положение в 10 раз более точно, чем в настоящее время», – заявил он.

Зачем это нужно правительству США и что это даст системе навигации? Судите сами: согласно справке пресс службы президента США, в 2000 году во всем мире насчитывалось более 4 миллионов пользователей GPS, а к 2003 году объем рынка этой системы навигации вырастет вдвое – с 8 до 16 миллиардов долларов. Надо ли объяснять, что на эти деньги систему можно не только поддерживать, но и развивать? США уже планируют вывести на орбиту 18 дополнительных спутников, что улучшит работу GPS.

Стандартным возражением на открытость систем навигации в России всегда были интересы безопасности. Военные опасались, что если сделать систему навигации доступной для всех, то она может быть использована внешними и внутренними врагами против государства. Однако это объяснение довольно слабое: США, сделав GPS доступной для всех, отнюдь не повредили собственной безопасности, оставив за собой право «регионального снижения точности» сигнала. На деле это означает, что в случае конфликта с той или иной страной американские военные смогут ухудшить точность показаний GPS приемников, используемых противником, или отключить их вовсе. Так что, пока все мирно – можно получать с пользователей GPS деньги. Как только возникнут проблемы – их можно отключить.

Сегодня уже непросто даже перечислить все области применения этой навигационной системы. Как отмечает в журнале «Компьютер пресс» Олег Татарников: «GPS приемники встраивают в автомобили, сотовые телефоны и даже в наручные часы! Туристы используют карманные приемники для прокладывания маршрутов и четкого их прохождения. Охотники и рыболовы отмечают координаты заветных охотничьих и рыбных местечек, а автотуристы обмениваются маршрутами с указанием автозаправок.

Ничто не остановит победного шествия GPS. Приемники стремительно уменьшаются в размерах и дешевеют, прибор размером со спичечный коробок уже можно купить сегодня менее чем за 50 долларов; навигационные чипы встраиваются в часы и мобильные телефоны, становятся составной частью автомобильных сигнализаций, которые сами сообщают в полицию местонахождение угнанного автомобиля. В отличие от не получивших широкого применения радиосигнализаций подобная система не требует специальной сети пеленгационных станций – здесь используется обычная мобильная связь. Кроме того, водитель может нажатием одной кнопки подать сигнал о разбойном нападении или о ДТП. Другая кнопка вызывает "скорую помощь". В ближайшее время на рынке автоэлектроники ожидается появление целого "маршрутного пакета" – полноценной бортовой навигационной системы с электронными картами российских городов и регионов…

Приемники GPS находят применение при решении самых разнообразных задач: геологи в реальном времени следят за малозаметным перемещением участков земной коры, спасатели определяют места катастроф, зоологи делают ошейники с портативными индикаторами и радиопередатчиками для изучения миграции животных, военные строят самонаводящиеся ракеты и бомбы, а экспедиция Национального географического общества США в прошлом году с сантиметровой точностью измерила высоту Эвереста».

В журнале «Компьютерра» появилось сообщение о выпуске одной из компаний GPS чипов, предназначенных для имплантации в тело человека!

Как это часто случается, у навигационной системы обнаружилась масса других дополнительных полезных свойств. При помощи системы можно, например, определить сверхточное время, необходимое, скажем, в научных экспериментах, измерить развиваемую при ходьбе или беге скорость, преодолеваемое расстояние. GPS показывает максимальную и среднюю скорость движения на автомобиле и с его помощью, в частности, можно проверить правильность показаний спидометра и одометра.

Надо ли говорить, что навигация при помощи этой системы сильно упрощается. В результате среди профессиональных «навигаторов» на подходе целое поколение специалистов, не умеющих работать с классическими навигационными приборами.

1   ...   7   8   9   10   11   12   13   14   ...   52

Похожие:

Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007 iconСергей Анатольевич Мусский 100 великих чудес техники 100 великих
Лучшие достижения человеческой цивилизации могут вызывать только восхищение могуществом разума человека и искусными деяниями человеческих...
Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007 iconСергей Анатольевич Мусский 100 великих нобелевских лауреатов 100 великих
Лев Толстой, Марина Цветаева, Федерико Гарсиа Лорка. Крайне мало в списках лауреатов выдающихся советских и российских ученых. Однако...
Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007 iconИгорь Анатольевич Мусский 100 великих заговоров и переворотов 100 великих
Щедро раздаются популистские обещания райской жизни. Но, как правило, добившись цели, власть забывает о своих обещаниях. Главное...
Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007 icon100 великих операций спецслужб м.: "Вече", 2005isbn 5-9533-0732-2Scan, ocr: ???, SpellCheck: Chububu, 2007

Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007 iconИгорь Анатольевич Мусский 100 великих отечественных кинофильмов 100 великих 0
Появление шедевров М. Калатозова, Г. Чухрая, М. Хуциева, С. Бондарчука, В. Меньшова, Н. Михалкова способствовало росту престижа отечественного...
Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007 icon100 великих вокалистов 100 великих «100 великих вокалистов»: Вече; 2004
Новая книга из серии «100 великих» посвящена профессиональным вокалистам: прежде всего исполнителям оперной музыки последних трех...
Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007 icon1. Вагнер, Бертиль Бертильевич (1941 -). Сто великих чудес природы / Б. Б. Вагнер. Москва : Вече, 2011. 431 с ил.; 22 см. (100 великих). Загл обл
Вагнер, Бертиль Бертильевич (1941 -). Сто великих чудес природы / Б. Б. Вагнер. Москва : Вече, 2011. 431 с ил.; 22 см. (100 великих)....
Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007 iconМихаил Юрьевич Курушин 100 великих военных тайн 100 великих
...
Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007 iconМусский Сергей Анатольевич 100 великих нобелевских лауреатов
Лев Толстой, Марина Цветаева, Федерико Гарсиа Лорка. Крайне мало в списках лауреатов выдающихся советских и российских ученых. Однако...
Сергей Анатольевич Мусский 100 великих чудес техники 100 великих SpellCheck: Chububu, 2007 iconНовые поступления литературы за первое полугодие 2009 года. 100 великих путешественников
И. А. Муромов; ред. Н. Б. Сергеева. М. Вече, 2007. 426 с ил. (100 великих). Isbn 978-5-9533-2374-1 : 204. 00 р
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница