Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга




Скачать 14.26 Mb.
НазваниеВаллас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга
страница8/169
Дата04.11.2012
Размер14.26 Mb.
ТипДокументы
1   ...   4   5   6   7   8   9   10   11   ...   169

§ 1. Свойства ионных каналов Клеточная мембрана нервной клетки


Клеточные мембраны состоят из жидкой фазы липидов и встроенных в липиды белковых

Рис. 2.1. Клеточная мембрана   и   ионный   канал. (А) Клеточные мембраны состоят   из   жидкой   фазы   липидов   и   встроенных в липиды белковых молекул. Пронизывающие мембрану (трансмембранные) белки образуют ионные каналы. (В) Схематичное представление ионного канала с центральной водной порой и воротным механизмом (G).



Fig. 2.1. Cell Membrane and Ion Channel. (A) The cell membrane is composed of a lipid bilayer embedded with proteins. Some of the proteins traverse the lipid layer, and some of these membrane-spanning proteins form membrane channels. (B) This schematic representation shows a membrane channel in cross section, with a central water-filled pore and channel "gate" (G). The gate opens and closes irregularly; the probability of opening may be regulated by the membrane potential by the binding of a ligand to the channel or by other biophysical or biochemical conditions. A sodium ion, surrounded by a single shell of water molecules, is shown to scale in the pore for size comparison.

36 Раздел П. Передача информации в нервной системе

молекул. Как показано на рис. 2.1 А, молекулы липидов организованы в двухслойную мембрану (бислой) толщиной около 6 нм. Полярные гидрофильные головки липидов обращены к поверхностям мембраны, а гидрофобные хвосты вытянуты к середине бислоя. Липиды плохо пропускают воду и практически непроницаемы для ионов. Белковые молекулы частично погружены в слой липидов, либо с внеклеточной, либо с цитоплазматической стороны. Некоторые белки целиком пронизывают мембрану. Именно пронизывающие мембрану (трансмембранные) белки образуют ионные каналы. Основные ионы, участвующие в генерации электрических сигналов, такие как калий, натрий, кальций или хлор, движутся через ионные каналы пассивно благодаря градиенту концентраций и электрическому потенциалу мембраны.

Другие трансмембранные белки служат в качестве насосов и переносчиков, обеспечивающих транспорт веществ через клеточную мембрану против электрохимических градиентов. Транспортные механизмы поддерживают ионный состав цитоплазмы, удаляя или возвращая те ионы, которые прошли клеточную мембрану по их электрохимическим градиентам. Они также выполняют важную функцию переноса через клеточные мембраны субстратов метаболических реакций, таких как глюкоза и аминокислоты. Свойства транспортных молекул обсуждаются в главе 4.
Как выглядят ионные каналы?

Молекулярное строение ионных каналов и их внутримембранное устройство обсуждаются в деталях в главе 3. В контексте данной главы полезно, однако, дать несколько общих характеристик физическим свойствам ионных каналов. Трансмембранный ионный канал имеет центральную водную пору, сообщающуюся как с внеклеточным, так и с внутриклеточным пространством (рис. 2.1В). С обеих сторон канала пора расширяется, образуя устья. Узкая внутримембранная часть ионного канала формирует ворота, которые могут открываться и закрываться, регулируя прохождение ионов.

Размер белка ионного канала варьирует в значительной степени в зависимости от типа канала. Некоторые ионные каналы имеют дополнительные структуры (и связанные с ними новые свойства). На рис. 2.1В представлен типичный канал средних размеров. Для сопоставления размеров иона и ионного канала на рисунке изображен гидратированный ион натрия.
Избирательность каналов

Мембранные каналы отличаются по своей избирательности: некоторые проницаемы для катионов, другие для анионов. Некоторые катионные каналы являются селективными по отношению только к одному виду иона. Например, некоторые каналы проницаемы исключительно для ионов натрия, другие для ионов калия, прочие для ионов кальция. Однако существуют относительно неселективные катионные каналы, позволяющие проходить даже небольшим органическим катионам. Анионные каналы, связанные с передачей электрического импульса, обладают низкой специфичностью. Однако они, как правило, называются «хлорными каналами», потому что ион хлора является наиболее распространенным подвижным анионом в биологических жидкостях. Вдобавок, некоторые каналы (называемые коннексонами) соединяют соседние клетки и проницаемы как для многих неорганических ионов, так и для некоторых мелких органических молекул. Коннексоны обсуждаются в главе 7.
Открытое и закрытое состояния

Хотя для простоты мы часто представляем белковые молекулы как статические структуры, они таковыми вовсе не являются. Из-за своей тепловой энергии все большие молекулы внутренне нестабильны. При комнатной температуре химические связи растягиваются и ослабляются, то есть постоянно колеблются по отношению к устойчивому состоянию. Несмотря на то, что эти индивидуальные движения составляют величину только около 10–12 м (с частотой, достигающей 1013 Гц), такие атомные колебания могут приводить в итоге к гораздо более значительным и более медленным изменениям в структуре молекул. Это происходит потому, что многочисленные быстрые движения атомов периодически создают условия для взаимодействия функциональных групп белка, несмотря на наличие взаимных отталкивающих сил. Взаимодействия функциональных групп приводят к кинетическим переходам белка, которые, раз возникнув, могут длиться многие миллисекунды или даже секунды. Известным примером может служить молекула гемоглобина. Центры связывания кислорода заключены внутри макромолекулы этого белка,

Глава 2. Ионные каналы и нейрональная сигнализация                                    37

и к ним нет постоянного свободного доступа. Связывание кислорода может быть достигнуто только за счет транзиторного доступа молекул газа к центрам связывания на молекуле тема. Таким образом, молекула гемоглобина «дышит», периодически становясь доступной для связывания кислорода, иначе данный белок был бы не способен выполнять предназначенную функцию по переносу газов 1).

Для ионных каналов функционально важными являются переходы между открытым и закрытым состояниями. Эти переходы совершаются практически моментально. С другой стороны, при системном изучении поведения любого ионного канала мы обнаружим, что время открытого состояния варьирует случайным образом. Иногда канал открыт только одну миллисекунду или даже меньше, хотя в следующий раз он может быть открыт на гораздо более продолжительное время (рис. 2.4). Тем не менее, каждый канал имеет характерное среднее время открытого состояния (т), и все вариации происходят вокруг этого среднего показателя.

Некоторые ионные каналы открываются достаточно часто даже в покое. Иными словами, вероятность нахождения таких каналов в открытом состоянии в неактивированной клетке относительно высока. Большинство таких ионных каналов проницаемо для калия или хлора. Они важны для генерации мембранного потенциала покоя. Остальные ионные каналы при этом закрыты, то есть вероятность нахождения их в открытом состоянии очень низка. Активация этих каналов адекватным стимулом резко увеличивает вероятность открытия. Этот же стимул может деактивировать ионные каналы, бывшие активными в покое. Важно помнить, что активация или деактивация канала означает возрастание или снижение вероятности открытия канала, но не увеличение или уменьшение времени открытого состояния (т) канала.

Помимо активации и деактивации, ионный ток через каналы регулируется двумя другими факторами. Первый фактор заключается в том, что ионный канал переходит в новое конформационное состояние, в котором обычный активирующий стимул не способен вызвать открытие канала. Для ионных каналов, активируемых деполяризацией, такое состояние называется инактивацией. Для каналов, отвечающих на химические стимулы, это состояние известно как десенситнзация. Второй механизм — блок открытого канала. Такое случается, когда, например, крупная молекула (такая как токсин) связывается с ионным каналом и физически закупоривает пору. Другим примером может служить блокирование некоторых катионных каналов ионами магния. В этом случае ионы магния сами не проникают через ионный канал, но связываются с каналом в области его устья и тем самым мешают проникновению других катионов.
Способы активации

Рис. 2.2 суммирует представления о способах активации ионных каналов. Некоторые каналы специфически отвечают на физические изменения в клеточной мембране нейрона. Наиболее яркими представителями этой группы являются потенциал-активируемые каналы. Примером может служить чувствительный к потенциалу натриевый канал, который отвечает за регенеративную деполяризацию, лежащую в основе генерации потенциала действия (глава 6). К этой группе относятся также механочувствительные ионные каналы, которые отвечают на механическое воздействие на клеточную мембрану. Рецепторы растяжения, содержащие ионные каналы такого рода, найдены в механорецепторах кожи (глава 17).

Другие ионные каналы открываются тогда, когда химические агенты активируют связывающие центры на молекуле канала. Такие лнганд-актнвнруемые ионные каналы подразделяются на две подгруппы, в зависимости от того, являются ли активные центры внутриклеточными или внеклеточными. Каналом, отвечающим на внеклеточную активацию, является катионный канал постсинаптической мембраны в скелетной мышце. Этот канал активируется нейротрансмиттером ацетилхолином, освобождающимся из двигательного нервного окончания (глава 9). Открытие ацетилхолин-активируемого ионного канала позволяет ионам натрия войти в клетку, вызывая деполяризацию мышечного волокна.

Лиганд-активируемые каналы, отвечающие на внутриклеточные стимулы, включают каналы, чувствительные к местным изменениям концентрации специфических ионов. Например, кальций-активируемые калиевые каналы активируются локальным повышением концентрации внутриклеточного кальция. Такие каналы играют важную роль в реполяризации клеточной мембраны во время завершения потенциала действия. Помимо ионов кальция, типичными представителями лигандов, активирующих ионные каналы с ци-

38 Раздел П. Передача информации в нервной системе



Рис. 2.2. Способы   активации   ионных   каналов. (А)  Ионные каналы, активируемые   изменением мембранного   потенциала или растяжением мембраны. (В) Ионные каналы, активируемые химическими агентами, либо с внеклеточной, либо с внутриклеточной стороны.

Fig. 2.2. Modes of Channel Activation. The probability of channel opening is influenced by a variety of stimuli. (A) Some channels respond to changes in the physical state of the membrane, specifically changes in membrane potential (voltage-activated) and mechanical distortion (stretch-activated). (B) Ligand activated channels respond to chemical agonists, which attach to binding sites on the channel protein. Neurotransmitters, such as glycine and acetylcholine, act on extracellular binding sites. Included among a wide variety of intracellular ligands are calcium ions, subunits of G proteins, and cyclic nucleotides.

топлазматической стороны мембраны, являются циклические нуклеотиды. Циклический ГМФ, например, отвечает за активацию натриевых каналов в палочках сетчатки. Такой тип канала играет принципиальную роль в работе зрительного анализатора (глава 19).

Эта классификация не является достаточно строгой. Например, кальций-активируемые калиевые каналы чувствительны также к изменению потенциала, а некоторые потенциал-активируемые ионные каналы чувствительны к внутриклеточным лигандам.
1   ...   4   5   6   7   8   9   10   11   ...   169

Похожие:

Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconВаллас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга
Настоящее издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований (проект №02-04-62007)
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconБоггс У., Боггс М. Uml и Rational Rose/ Пер с англ
Бадд Т. Объектно-ориентированное программирование в действии./ Пер с англ. – Спб.: Питер, 1997
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconДжеффри М. Медицина неотложных состояний: пер с англ. / Дж. М. Катэрино, С. Кахан; пер с англ под ред. Д. А. Струтынского
...
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconАнастази А. А 64 Дифференциальная психология. Индивидуальные и групповые разли- чия в поведении /Пер с англ
Пер с англ. — М.: Апрель Пресс, Изд-во эксмо-пресс, 2001. — 752 с. (Серия «Кафедра психологии»)
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconАхо А. Компиляторы: Принципы, технологии, инструменты: Пер с англ./ А. Ахо, Р. Сети, Д. Ульман
Учебный курс mcse: Пер с англ. 2-е изд., перераб. М.: Рус. Редакция, 2001. 672 с. Isbn 5-7502-0183-Х: 35,00 грн
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconМорган М.; Пер с англ. А. Дикарёв, О. Сиротенко
Послание с того края Земли / Морган М.; Пер с англ. А. Дикарёв, О. Сиротенко. М.: Ид «Гаятри», 2005. 152 с.: (Терра Мистика)
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconНовые поступления литературы (июль сентябрь 2002) математика инв. 62350 в 161. 8 Б 93
Одномерные вариационные задачи. Введение / Пер с англ. Рожковская Т. Н.; Ред пер. Уральцева Н. Н. Новосибирск: Научная книга, 2002....
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconБир С. Мозг фирмы: Пер с англ
Бир С. Мозг фирмы: Пер с англ. М.: Радио и связь, 1993. — 416 с.: ил. Isbn 5-256-00426-3
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconЦитренбаум Ч., Кинг М., Коэн У. Ц 59 Гипнотерапия вредных привычек /Пер с англ. Л. В. Ерашовой
Ц 59 Гипнотерапия вредных привычек/Пер с англ. Л. В. Ерашовой. — М.: Не­зави­симая фирма “Класс”, 1998. — 192 с. — (Библиотека психологии...
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconЛитература Мэдник С., Донован Дж. Операционные системы: Пер с англ. М. Мир, 1987. 792с
Дейтел Г. Введение в операционные системы: Пер с англ. М.: Мир, 1987. т 359с., т 398с
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница