Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга




Скачать 14.26 Mb.
НазваниеВаллас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга
страница6/169
Дата04.11.2012
Размер14.26 Mb.
ТипДокументы
1   2   3   4   5   6   7   8   9   ...   169

§ 3. Клеточная и молекулярная биология нейронов


Как и другие типы клеток организма, нейроны в полной мере обладают клеточными механизмами метаболической активности, синтеза белков мембраны (например, белков ионных каналов и рецепторов). Более того, белки ионных каналов и рецепторов направленно транспортируются к местам локализации в клеточной мембране. Специфичные для натрия или калия каналы расположены на мембране аксонов ганглиозных клеток дискретными группами (кластерами). Эти каналы участвуют в инициации и проведении ПД.

Пресинаптические терминали, образованные отростками фоторецепторов, биполярных клеток и других нейронов, содержат в своей мембране специфические каналы, через которые могут проходить ионы кальция. Вход кальция запускает выделение медиатора. Каждый тип нейронов синтезирует, хранит и выделяет определенный вид медиатора(ов). В отличие от многих других белков мембраны, рецепторы для специфических медиаторов расположены в точно определенных местах — постсинаптических мембранах. Среди белков мембраны известны также белки-насосы или транспортные белки, роль которых заключается в сохранении постоянства внутреннего содержимого клетки.

Основным отличием нервных клеток от остальных видов клеток организма является наличие длинного аксона. Так как в аксонах нет биохимической «кухни» для синтеза белков, все основные молекулы должны переноситься к терминалям с помощью процесса, называемого аксональным транспортом, причем часто на очень большие расстояния. Все молекулы, необходимые для поддержания структуры и функции, равно как и молекулы

32 Раздел I. Введение



Рис. 1.16. Генетические влияния на развитие глаз у дрозофилы. Ген eyeless контролирует развитие глаз у дрозофилы. Повышенная экспрессия гена приводит к появлению морфологически нормальных эктопических глаз (А, В) в разных частях тела мушки.

fig. 1.16. Genetic Influences on Development of the Eye in the fruit fly, Drosophila. A gene known as eyeless controls development of the eye in the fruit fly. After deletion of this gene, eyes fail to appear. Overexpression leads to the development of ectopic eyes that are morphologically normal. (A) This scanning electron micrograph shows such ectopic eyes on the antenna (arrowhead) and on the wing (arrow). (B) Here the wing eye is shown at higher magnification. A gene with strikingly similar sequence homology in the mouse also leads to the formation of ectopic eyes in the fly if it is overexpressed. (After Haider, Callaerts, and Gehring, 1995; micrographs kindly provided by W. Gehring.)

мембранных каналов, путешествуют от тела клетки этим путем. Точно так же и молекулы, захваченные мембраной терминалей, проделывают обратный путь к телу клетки, используя аксональный транспорт.

Нейроны отличаются от большинства клеток еше и тем, что, за небольшим исключением, не могут делиться. Это означает, что у взрослых животных погибшие нейроны не могут быть заменены.

§4. Регуляция развития нервной системы


Высокая степень организации такой структуры, как сетчатка, ставит новые проблемы. Если для сборки компьютера необходим человеческий мозг, то никто не контролирует мозг во время развития и установления его связей. Пока еще остается загадкой, как правильная «сборка» частей мозга приводит к появлению его уникальных свойств.

В зрелой сетчатке каждый тип клеток расположен в соответствующем слое или подслое и образует строго определенные связи с соответствующими клетками-мишенями. Такое устройство является необходимым условием правильного функционирования. Например, для развития нормальных ганглиозных клеток клетка-предшественник должна разделиться, мигрировать в определенное место, дифференцироваться в определенную форму и образовать специфические синаптические связи.

Аксоны этой клетки должны найти через значительное расстояние (оптический нерв) определенный слой клеток-мишеней в следующем звене синаптического переключения. Аналогичные процессы происходят во всех отделах нервной системы, в результате чего образуются сложные структуры со специфическими функциями.

Исследование механизмов образования таких сложных структур, как сетчатка, является одной из ключевых проблем современной нейробиологии. Понимание того, каким образом сложные взаимосвязи нейронов образуются в процессе индивидуального развития (онтогенезе), может помочь описать свойства и происхождение функциональных расстройств мозга. Некоторые молекулы могут играть ключевую роль в дифференциации, росте, миграции, образовании синапсов и выживании нейронов. Такие молекулы в настоящее время описываются все чаще. Интересно отметить, что электрические сигналы регулируют молекулярные сигналы, которые запускают рост аксонов и образование связей. Активность играет роль в установлении паттерна связей.

Генетические подходы позволяют идентифицировать гены, которые контролируют дифференциацию целых органов, таких как глаз в целом. Геринг9) с коллегами исследовал экспрессию гена eyeless у плодовой мушки Drosophila, который контролирует развитие глаз. Удаление этого гена из генома приводит к тому, что глаза не развиваются. Гомоло-

Глава 1. Передача информации и структурная организация мозга                          33

гичные гены у мышей и человека (известные как small eye и aniridia) похожи по структуре. Если гомологичный ген eyeless млекопитающих искусственно встроен и экспрессируется у мушки, то у этого животного развиваются дополнительные (мушиные по структуре) глаза на усиках, крыльях и ногах (рис. 1.16). Это позволяет предположить, что этот ген одинаково управляет образованием глаза у мухи или мыши, несмотря на полностью различные структуру и свойства глаз насекомых и млекопитающих.

§ 5. Регенерация нервной системы после травмы


Нервная система не только устанавливает связи во время развития, но может восстанавливать некоторые связи после повреждения (ваш компьютер этого делать не может). Например, аксоны в руке могут прорастать после повреждения и устанавливать связи; рука опять может двигаться и ощущать прикосновения. Аналогично, у лягушки, рыбы или беспозвоночного животного вслед за разрушениями в нервной системе наблюдается регенерация аксонов и восстановление функции. После перерезки оптического нерва у лягушки или рыбы волокна опять прорастают и животное может видеть. Однако, эта способность не присуща центральной нервной системе взрослых позвоночных животных — у них регенерация не происходит. Молекулярные сигналы, которые блокируют регенерацию, и их

биологическое значение для функционирования нервной системы неизвестны.
Выводы

∙  Нейроны связаны друг с другом строго определенным способом.

∙  Информация от клетки к клетке передается через синапсы.

∙  В относительно простых системах, таких как сетчатка глаза, можно проследить все связи и понять значение межклеточных сигналов.

∙  Нервные клетки мозга являются материальными элементами восприятия.

∙  Сигналы в нейронах высоко стереотипны и одинаковы для всех животных.

∙  Потенциалы действия без потерь могут проходить большие расстояния.

∙  Локальные градуальные потенциалы зависят от пассивных электрических свойств нейронов и распространяются только на короткие расстояния.

∙  Особое строение нервных клеток требует специализированного механизма аксонального транспорта белков и органелл от и к телу клетки.

∙  Во время индивидуального развития нейроны мигрируют к окончательному месторасположению и устанавливают связи с мишенями.

∙  Молекулярные сигналы управляют ростом аксонов.
Цитированная литература

1.   Ramon у Cajal, S. [1909-1911] 1995. Histology of the Nervous System, 2 vols. Translated by Neely Swanson and Larry Swanson. Oxford University

Press, New York.

2.   Helmholtz, H. von. 1889. Popular Scientific Lectures. Longmans, London.

3.   Hodgkin, A. L. 1964. The Conduction of the Nervous Impulse. Liverpool University Press, Liverpool, England.

4.  Adrian,  E. D.  1946.  The Physical Background of Perception. Clarendon. Oxford, England.

5.   Katz,   B.    1966.   Nerve,   Muscle,   and   Synapse. McGraw-Hill, New York

6.   Sherrington, C. S. 1906. The fntegrative Action of the Nervous System. Reprint, Yale University Press, New Haven, CT, 1966.

7.   Kuffler, S. W. 1953. /. Neurophysiol. 16: 37-68.

8.   Hubel, D.H., and Wiesel, T.N. 1977. Proc. R.Soc. Land. В 198: 1-59.

9.   Haider, G., Callaerts, P.. and Gehring. W.J. 1995. Science 267: 1788-1792.
1   2   3   4   5   6   7   8   9   ...   169

Похожие:

Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconВаллас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга
Настоящее издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований (проект №02-04-62007)
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconБоггс У., Боггс М. Uml и Rational Rose/ Пер с англ
Бадд Т. Объектно-ориентированное программирование в действии./ Пер с англ. – Спб.: Питер, 1997
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconДжеффри М. Медицина неотложных состояний: пер с англ. / Дж. М. Катэрино, С. Кахан; пер с англ под ред. Д. А. Струтынского
...
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconАнастази А. А 64 Дифференциальная психология. Индивидуальные и групповые разли- чия в поведении /Пер с англ
Пер с англ. — М.: Апрель Пресс, Изд-во эксмо-пресс, 2001. — 752 с. (Серия «Кафедра психологии»)
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconАхо А. Компиляторы: Принципы, технологии, инструменты: Пер с англ./ А. Ахо, Р. Сети, Д. Ульман
Учебный курс mcse: Пер с англ. 2-е изд., перераб. М.: Рус. Редакция, 2001. 672 с. Isbn 5-7502-0183-Х: 35,00 грн
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconМорган М.; Пер с англ. А. Дикарёв, О. Сиротенко
Послание с того края Земли / Морган М.; Пер с англ. А. Дикарёв, О. Сиротенко. М.: Ид «Гаятри», 2005. 152 с.: (Терра Мистика)
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconНовые поступления литературы (июль сентябрь 2002) математика инв. 62350 в 161. 8 Б 93
Одномерные вариационные задачи. Введение / Пер с англ. Рожковская Т. Н.; Ред пер. Уральцева Н. Н. Новосибирск: Научная книга, 2002....
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconБир С. Мозг фирмы: Пер с англ
Бир С. Мозг фирмы: Пер с англ. М.: Радио и связь, 1993. — 416 с.: ил. Isbn 5-256-00426-3
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconЦитренбаум Ч., Кинг М., Коэн У. Ц 59 Гипнотерапия вредных привычек /Пер с англ. Л. В. Ерашовой
Ц 59 Гипнотерапия вредных привычек/Пер с англ. Л. В. Ерашовой. — М.: Не­зави­симая фирма “Класс”, 1998. — 192 с. — (Библиотека психологии...
Валлас Б., Фукс П. От нейрона к мозгу / Пер с англ. П. М. Балабана, А. В. Галкина, Р. А. Гиниатуллина, Р. Н. Хазипова, Л. С. Хируга iconЛитература Мэдник С., Донован Дж. Операционные системы: Пер с англ. М. Мир, 1987. 792с
Дейтел Г. Введение в операционные системы: Пер с англ. М.: Мир, 1987. т 359с., т 398с
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница