Минобрнауки томский государственный университет факультет информатики утверждаю




Скачать 52.42 Kb.
НазваниеМинобрнауки томский государственный университет факультет информатики утверждаю
Дата25.10.2012
Размер52.42 Kb.
ТипЗадача
МИНОБРНАУКИ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ИНФОРМАТИКИ


УТВЕРЖДАЮ

Декан факультета

С.П. Сущенко

« » 2010 г.


МАТЕМАТИЧЕСКИЙ АНАЛИЗ II

ЕН.Ф.1.08

РАБОЧАЯ ПРОГРАММА

трудоемкость дисциплины 6 зачетных единиц


НАПРАВЛЕНИЕ 010400 – ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ


Томск

2010




УТВЕРЖДЕНО

кафедрой программной инженерии.

Протокол №19 от 01.12.2010

Зав. кафедрой, профессор

О.А. Змеев


СОСТАВИТЕЛЬ

д.ф.-м.н, профессор кафедры программной инженерии

А.Ф.Терпугов



I.Организационно-методический раздел


Цель курса – освоение математического анализа.

Задача учебного курса – изучение методов математического анализа.

Дисциплины-предшественники – математический анализ I.

Требования к уровню освоения дисциплины – владение методами математического анализа.

II.Содержание дисциплины

II.1.Лекционный курс

Тема 1. Неопределенный интеграл.


Первообразная, ее свойства. Неопределенный интеграл его свойства. Таблица неопределенных интегралов. Замена переменных, интегрирование по частям.

Комплексные числа. Алгебраическая форма комплексных чисел, операции над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексных чисел, модуль и аргумент комплексного числа, тригонометрическая форма комплексных чисел. Умножение, деление, возведение в степень и извлечение корней из комплексных чисел в тригонометрической форме. Формула Эйлера и показательная форма комплексных чисел. Разложение многочленов на сомножители. Разложение рациональных дробей на простейшие. Интегрирование дробно-рациональных функций.

Интегралы от тригонометрических функций – универсальная подстановка и упрощенные случаи. Интегрирование дробно-линейных иррациональностей. Интегрирование биномиальных коэффициентов. Подстановки Эйлера.

Тема 2. Определенный интеграл.


Процедура построения определенного интеграла. Суммы Дарбу и признак существования определенного интеграла. Интегрируемость монотонной и непрерывной функций. Свойства интегрируемых функций. Свойства определенных интегралов. Первая теорема о среднем.

Формула Ньютона-Лейбница. Интегрирование по частям. Замена переменных в определенном интеграле. Определенный интеграл как функция верхнего предела.

Геометрические приложения определенного интеграла – длина дуги кривой, площадь криволинейной трапеции и криволинейного сектора, объем и поверхность тела вращения.

Функции с ограниченной вариацией, их свойства. Определение интеграла Стилтьеса, его свойства и вычисление.

Тема 3. Несобственные интегралы.


Несобственные интегралы первого рода, их свойства. Признаки существования несобственных интегралов от неотрицательных функций. Интегралы от функций произвольного знака – признак Больцано-Коши, абсолютная сходимость, признак Дирихле. Пример неабсолютно сходящегося интеграла. Признак Абеля.

Несобственные интегралы второго рода, их свойства. Признаки существования несобственных интегралов от неотрицательных функций.

Главные значения несобственных интегралов. Преобразование несобственных интегралов – интегрирование по частям, замена переменных. Интегралы Фруллани.

Интегральные неравенства – неравенства Гельдера, Минковского, Иенсена. Обобщенная формула интегрирования по частям и остаточный член формулы Тейлора в интегральной форме.

Тема 4. Числовые ряды.


Определение числового ряда, его сходимости и расходимости. Свойства сходящихся рядов. Сходимость рядов с положительными членами – Признаки Коши, Даламбера. Сходимость гармонического ряда и признак сходимости Раабе. Отсутствие универсального ряда для построения признака сходимости.

Интегральный признак сходимости Коши. Оценка остатка сходящегося ряда и темпа роста расходящегося ряда.

Сходимость произвольных рядов. Признак сходимости Больцано-Коши, абсолютная и неабсолютная сходимость. Знакопеременные ряды и признак Лейбница. Преобразование Абеля, признаки Дирихле и Абеля.

Сочетательное свойство сходящихся рядов. Переместительное свойство абсолютно сходящихся рядов. Теорема Римана. Умножение рядов. Двойные ряды.

Бесконечные произведения – определение, свойства. Сходимость бесконечных произведений.

II.2.Практические занятия


По всем темам лекционной части курса предусмотрены практические занятия.

III.Распределение часов курса по темам и видам работ


№№ пп

Наименование тем

Всего часов

Аудиторные занятия (час),

в том числе

Самостоятельная

работа










лекции

практики

лабораторные занятия




1

Неопределенный интеграл

38

12

12




14

2

Определенный интеграл

32

10

10




12

3

Несобственные интегралы

38

12

12




14

4

Числовые ряды

36

12

10




14

ИТОГО




144

46

44

0

54

IV. Учебно-методическое обеспечение курса

IV.1. Основная литература


  1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Том 1, 2, 3. – М.: Наука, 1970.

  2. Ильин В.А., Позняк Э.Г. Основы математического анализа. Часть 1, 2. – М.: Наука, 1980.

  3. Демидович Б.П. Сборник задач и упражнений по математическому анализу. – М.: Наука, 1972.

Похожие:

Минобрнауки томский государственный университет факультет информатики утверждаю iconМинобрнауки томский государственный университет факультет информатики утверждаю
Цель курса – закрепление теоретических знаний по теоретическим и математическим основам информатики, навыков создания и анализа программных...
Минобрнауки томский государственный университет факультет информатики утверждаю iconМинобрнауки томский государственный университет факультет информатики утверждаю
Цель курса – изучение методов объектно-ориентированного анализа и проектирования
Минобрнауки томский государственный университет факультет информатики утверждаю iconМинобрнауки томский государственный университет факультет информатики утверждаю
Цель курса – изучение методов объектно-ориентированного анализа и проектирования
Минобрнауки томский государственный университет факультет информатики утверждаю iconМинобрнауки томский государственный университет факультет информатики утверждаю
Цель курса – изучение математических основ и алгоритмов представления и обработки изображений
Минобрнауки томский государственный университет факультет информатики утверждаю iconМинобрнауки томский государственный университет факультет информатики утверждаю
Цель курса – изучение теории формальных языков, автоматов и методов построения трансляторов
Минобрнауки томский государственный университет факультет информатики утверждаю iconМинобрнауки томский государственный университет факультет информатики утверждаю
Цель курса – ознакомить студентов с основными задачами компьютерной графики и методами их решения
Минобрнауки томский государственный университет факультет информатики утверждаю iconМинобрнауки томский государственный университет факультет информатики утверждаю
Задача учебного курса – ознакомление с основными понятиями и методами неклассических логик с ориентацией на их использование в практической...
Минобрнауки томский государственный университет факультет информатики утверждаю iconМинобрнауки томский государственный университет факультет информатики утверждаю
Задача учебного курса – ознакомление с основными понятиями и методами неклассических логик с ориентацией на их использование в практической...
Минобрнауки томский государственный университет факультет информатики утверждаю iconМинобрнауки томский государственный университет факультет информатики утверждаю
Цель курса – формирование основ знаний по теории информации, принципам кодирования, изучение важнейших алгоритмов в этой области
Минобрнауки томский государственный университет факультет информатики утверждаю iconМинобрнауки томский государственный университет факультет информатики утверждаю
Задача учебного курса – ознакомление с основными понятиями и методами математической логики и теории алгоритмов с ориентацией на...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница