Variability of bulk organic δ




НазваниеVariability of bulk organic δ
страница4/8
Дата23.10.2012
Размер0.56 Mb.
ТипДокументы
1   2   3   4   5   6   7   8

References


Austin, A.T., Vitousek, P.M., 2005. Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113, 519–529.

Bender, M.M., 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10(6), 1239-1244.

Bianchi, T.S., Wysocki, L.A., Stewart, M., Filley, T.R., McKee, B.A., 2007. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississppi River and its upper tributaries. Geochimica et Cosmochimica Acta 71, 4425-4437.

Bird, M.I., Robinson, R.A.J., Oo, N.W., Aye, M.M., Lu, X.X., Higgitt, D.L., Swe, A., Tun, T., Win, S.L., Aye, K.S., Win, K.M.M., Hoey, T.B., 2008. A preliminary estimate of organic carbon transport by the Ayeyarwady (Irrawaddy) and Thanlwin (Salween) Rivers of Myanmar. Quaternary International 186(1), 113-122.

Cao, C., Wang, W., Liu, L., Shen, S., Summons, R.E., 2008. Two episodes of 13C-depletion in organic carbon in the latest Permian: Evidence from the terrestrial sequences in northern Xinjiang, China. Earth and Planetary Science Letters 270(3-4), 251-257.

Callahan, J., Dai, M., Chen, R.-F., Li, X., Lu, Z., Huang, W., 2004. Distribution of dissolved organic matter in the Pearl River Estuary, China. Marine Chemistry 89, 211 – 224.

Chen, J., Jin, H., Yin, K., Li, Y., 2003. Variation of reactivity of particulate and sedimentary organic matter along the Zhujiang River Estuary. Acta Oceanologica Sinica 22, 557– 568.

Chen, J., Li, Y., Yin, K., Jin, H., 2004. Amino acids in the Pearl River Estuary and the adjacent waters: origins, transformation and degradation. Continental Shelf Research 24, 1877–1894.

Chivas, A.R., Garcia, A., van der Kaars, S., Couapel, M.J.J., Holt, S., Reeves, J.M., Wheeler, D.J., Switzer, A.D., Murray-Wallace, C.V., Banerjee, D., Price, D.M., Wang, S.X., Pearson, G., Edger, N.T., Beaufort, L., De Deckker, P., Lawson, E., Cecil, C.B., 2001. Sea level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview. Quaternary International 83-85, 19-46.

Chmura, G.L., Aharon, P., Socki, R.A., Abernethy, R., 1987. An inventory of 13C abundances in coastal wetlands of Louisiana, USA: vegetation and sediments. Oecologia 74, 264–271.

Cifuentes, L.A., 1991. Spatial and temporal variations in terrestrially-derived organic matter from sediments of the Delaware Estuary. Estuaries 14, 414– 429.

Countway, R.E., Canuel, E.A., Dickhut, R.M., 2007. Sources of particulate organic matter in surface waters of the York River, VA estuary. Organic Geochemistry 38(3), 365-379.

Craig, H., 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3(2-3), 53-92.

Dai, M., Martin, J., Hong, H., Zhang, Z., 2000. Preliminary study on the dissolved and colloidal organic carbon in the Zhujiang River Estuary. Chinese Journal of Oceanology and Limnology 18, 265–273.

Driese, S.G., Li, Z.-H., Horn, S.P., 2005. Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23,000 14C yr B.P. paleosol and floodplain soils, southeastern West Virginia, USA. Quaternary Research 63(2), 136-149.

Driese, S.G., Li, Z.-H., McKay, L.D., 2008. Evidence for multiple, episodic, mid-Holocene Hypsithermal recorded in two soil profiles along an alluvial floodplain catena, southeastern Tennessee, USA. Quaternary Research 69(2), 276-291.

Emerson, S, Hedges, J.I., 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3, 621–634.

Fan, M., Dettman, D.L., Song, C., Fang, X., Garzione, C.N., 2007. Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma: The stable isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology 247(3-4), 313-328.

Fontugne, M.R., Jouanneau, J.-M., 1987. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary: Evidence from measurements of carbon isotopes in organic matter from the Gironde system. Estuarine, Coastal Shelf Science 24(3), 377-387.

Fry, B., Sherr, E.B., 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27, 13–47.

Gaye, B., Fahl, K., Kodina, L.A., Niko, L.N., Nagel, B., Unger, D., Gebhardt, A.C., 2007. Particulate matter fluxes in the southern and central Kara Sea compared to sediments: Bulk fluxes, amino acids, stable carbon and nitrogen isotopes, sterols and fatty acids. Continental Shelf Research 27(20), 2570-2594.

Goñi, M.A., Ruttenberg, K.C., Eglinton, T.I., 1997. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf ofMexico. Nature 389, 275-278.

Guo, X., He, S., 2006. Geochemical Characteristics and Origin of the Light Crude Oils in Panyu Lower Uplift, Pearl River Mouth Basin. Geological Science and Technology Information 25(5), 63-68 (in Chinese, with English abstract).

Harmelin-Vivien, M., Loizeau, V., Mellon, C., Beker, B., Arlhac, D., Bodiguel, X., Ferraton, F., Hermand, R., Philippon, X., Salen-Picard, C., 2008. Comparison of C and N stable isotope ratios between surface particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean). Continental Shelf Research 28, 1911-1919.

de Haas, H., van Weering, T.C.E., de Stigter, H., 2002. Organic carbon in shelf seas: sinks or sources, processes, and products. Continental Shelf Research 22, 691–717.

Hatch, M.D., Slack, C.R., 1970. Photosynthetic CO2-fixation pathways. Annual Review of Plant Physiolology 21, 141-162.

Hedges, J.I., Keil, R.G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49, 81–115.

Hedges, J.I., Parker, P.L., 1976. Land-derived organic matter in surface sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta 40, 1019–1029.

Hsieh, M., 2006. Geochemical characterization of organic matter in Victoria Harbour sediments, Hong Kong. PhD thesis, University of Oklahoma, Japan.

Huang, L., Jian, W., Song, X., Huang, X., Liu, S., Qian, P., Yin, K., Wu, M., 2004. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Marine Pollution Bulletin 49, 588–596.

Huang, X.P., Huang, L.M., Yue, W.Z., 2003. The characteristic of nutrients and eutrophication in the Pearl River estuary, South China. Marine Pollution Bulletin 47, 30– 36.

Hu, J., Peng, P., Jia, G., Mai, B., Zhang, G., 2006. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China. Marine Chemistry 98, 274– 285

Hu, J., Zhang, G., Li, K., Peng, P., Chivas, A.R., 2008. Increased eutrophication offshore Hong Kong, China during the past 75 years: Evidence from high-resolution sedimentary records. Marine Chemistry 110(1-2), 7-17.

Jia, G., Peng, P., 2003. Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), southern China. Marine Chemistry 82, 47– 54.

Kang, Y., Mai, B., Huang, X., Zhang, G., Sheng, G., Fu, J., 2000. Primary study on status of organic pollution in surface sediments of the Pearl River Delta. Acta Science Circumstantiae 20, 164-170 (in Chinese, with English abstract).

Lamb, A.L., Wilson, G.P., Leng, M.J., 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Review 75, 29-57.

Li, P., Qiao, P., Zheng, H., Fang, G., Huang, G., 1990. The environmental evolution of the Pearl River Delta in the last 10,000 years (in Chinese). China Ocean Press, Beijing.

Liu, W., An, Z., Zhou, W., Head, M.J., Cai, D., 2003. Carbon isotope and C/N ratios of suspended matter in rivers: an indicator of seasonal change in C4/C3 vegetation. Applied Geochemistry 18, 1241-1249.

Liu, K.-K., Kao, S.-J., Hu, H., Chou, W., Hung, G., Tseng, C., 2007. Carbon isotopic composition of suspended and sinking particulate organic matter in the northern South China Sea--From production to deposition. Deep Sea Research (Part II, Topical Studies in Oceanography) 54(14-15), 1504-1527.

Mackie, E.A.V., Leng, M.J., Lloyd, J.M., Arrowsmith, C., 2005. Bulk organic δ13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin. Journal of Quaternary Science 20, 301-408.

Mackie, E.A.V., Lloyd, J.M., Leng, M.J., Bentley, M.J., Arrowsmith, C., 2007. Assessment of δ13C and C/N ratios in bulk organic matter as palaeosalinit indicators in Holocene and Lateglacial isolation basin sediments, northwest Scotland. Journal of Quaternary Science 22(6), 579-591.

Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27, 213– 250.

Middelburg, J.J., Nieuwenhuize, J., 1998. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Marine Chemistry 60, 217-225.

Middelburg, J.J., Herman, P.M.J., 2007. Organic matter processing in tidal estuaries. Marine Chemistry 106(1-2), 127-147.

Morton, B., Wu, S.S., 1975. The hydrology of the coastal waters of Hong Kong. Environmental Research 10,319–347.

O’Leary, M.H., 1985. Carbon isotope fractionation in plants. Phytochemistry 20, 553-567.

Owen, R.B., Lee, R., 2004. Human impacts on organic matter sedimentation in a proximal shelf setting, Hong Kong. Continental Shelf Research 24, 583–602

Park, R., Epstein, S., 1960. Carbon isotope fractionation during photosynthesis. Geochimica et Cosmochimica Acta 21(1-2), 110-126.

Ramaswamy, V., Gaye, B., Shirodkar, P.V., Chivas, A.R., Wheeler, D., Thwin, S., 2008. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. Marine Chemistry 111 (3-4), 137-150.

Saia, S.E.M.G., Pessenda, L.C.R., Gouveiaa, S.E.M., Aravena, R., Bendassolli, J.A., 2008. Last glacial maximum (LGM) vegetation changes in the Atlantic Forest, southeastern Brazil. Quaternary International 184(1), 195-201.

Schlunz, B., Schneider, R.R., Muller, P.J., Showers, W.J., Wefer, G., 1999. Terrestrial organic carbon accumulation on the Amazon deep sea fan during the last glacial sea level low stand. Chemical Geology 159, 263–281.

Schultz, D. and Calder, J.A., 1976. Organic carbon 13C/12C variations in estuarine sediments. Geochimica et Cosmochimica Acta 40, 381–385.

Tan, Y., Hiang, L., Chen, Q., Huang, X., 2004. Seasonal variation in zooplankton composition and grazing impact on phytoplankton standingstock in the Pearl River Estuary, China. Continental Shelf Research 24, 1949–1968.

Tesi, E., Miserocchi, S., Goñi, M.A., Langone, L., Boldrin, A., Turchetto, M., 2007. Organic matter origin and distribution in suspended particulate materials and surficial sediments from the western Adriatic Sea (Italy). Estuarine. Coastal Shelf Science 73(3-4), 431-446.

Valiela, I., Teal, J.M., Allen, S.D., 1985. Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology 89, 29–54.

Wai, O.W.H., Wang, C.H., Li, Y.S., Li, X.D., 2004. The formation mechanisms of turbidity maximum in the Pearl River estuary, China. Marine Pollution Bulletin 48, 441–448.

Wilson, G.W., Lamb, A.L., Leng, M.J., Gonzalez, S., Huddart, D., 2005. Variability of organic δ13C and C/N in the Mersey Estuary, UK and its implications for sea-level reconstruction studies. Estuarine, Coastal Shelf Science 64, 685– 698.

Winkler M. G. and Wang P. K., 1993. The late Quaternary vegetation and climate of China, In: Wright W. H. E., Jr., Kutzbach J. E., Webb III T., Ruddiman W. F., Street-Perrott F. A. and Bartlein P. J. (Eds.), Global Climates Since The Last Glacial Maximum. University of Minnesoda Press, Minneapolis, MN, 221–264.

Wu, Y., Zhang, J., Liu, S.M., Zhang, Z.F., Yao, Q.Z., Hong, G.H., Cooper, L., 2007. Sources and distribution of carbon in the Yangtze River (Changjiang) system. Estuarine Coastal Shelf Science 71, 13–25.

Xu, J.L., Li, Y.X., Can, F.X., Chen, Q.D., 1985. Evolution of channels and shoals in Lingding Sea Pearl River Estuary. Ocean Press, Beijing (in Chinese).

Yin, K., Zhang, J., Qian, P., Jian, W., Huang, L., Chen, J., Wu, M.C.S., 2004. Effect of wind events on phytoplankton blooms in the Pearl River estuary during summer. Continental Shelf Research 24, 1909–1923

Zhang, J., Wu, Y., Jennerjahn, T.C., Ittekkot, V., He, Q., 2007. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics. Marine Chemistry 106(1-2), 111-126.

Zhang, S., Lu, X., Higgitt, D.L., Chen, C.A., Han, J., Sun, H., 2008. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global and Planetary Change 60, 365–380.

Zong, Y., Lloyd, J.M., Leng, M.J., Yim, W.W.-S., Huang, G., 2006. Reconstruction of Holocene monsoon history from the Pearl River estuary, southern China, using diatoms, carbon isotope ratios. The Holocene 16, 1-13.

Zong, Y., Huang, G., Switzer, A.D., Yu, F., Yim, W.W.-S., 2009. An evolutionary model for the Holocene formation of the Pearl River delta, China. The Holocene 19, 129-142.


Figure captions


Fig. 1 Study area, showing the Pearl River delta and estuary in the East Asian area (a) and sampling sites (b). There is no surface sediment from site PE43 and no winter POC from site PE76 and 77. ‘PE’ stands for the ‘Pearl River estuary’.

Fig. 2 Clustering groups for the estuarine surface sediment samples and POC samples identified by winter salinity and sand concentration. Groups G1-G3 are from freshwater areas; groups G4-G7 are from brackish areas and G8-G9 are from marine areas.

Fig. 3 Bi-plot of the δ13C and C/N of C3 and C4 plants. a: individual values for each plant with the average value of C3 and C4 plants; b: average values of different types of plants within the C3 and C4 groups (error bars are the standard deviation).

Fig. 4 Bi-plot of the δ13C and C/N of terrestrial soil samples. a: individual values for each soil sample; b: average values of different types of soil with stand deviation.

Fig. 5 Bi-plot of seasonal δ13C and C/N of the POC.

Fig. 6 A summarized bi-plot of seasonal δ13C and C/N (a: winter and b: summer) and bi-plot of seasonal δ13C and water salinity (c: winter and d: summer) of the POC for each group indentified by cluster analysis.

Fig. 7 Comparison δ13C and C/N values between the POC on 70 µm net and summer POC on filter paper.

Fig. 8 Bi-plot of the δ13C and C/N of surface sediment groups. a: scattering value of the individual sample; b:average δ13C and C/N values of the seven groups with standard deviation shown.


Tables


Table 1 Results of the plants samples and their sampling sites.







δ13C (‰)

TOC (%)

TN (%)

C/N

Type

Label

Site

C3 plants

General terrestrial C3 plants

-28.5

41.6

3.1

13.4

C3 Plant

B1

N1

-29.9

46.7

3.7

12.5

C3 Plant

B2

N2

-29.3

42.0

2.3

18.1

C3 Plant

B3

N2

-28.1

43.3

5.9

7.4

C3 Plant

B4

N2

-30.3

45.3

3.9

11.5

C3 Plant

B5

N3

-28.1

40.1

1.9

21.4

C3 Plant

B6

N3

-31.0

45.3

1.8

25.4

C3 Plant

B7

N3

-29.9

40.9

2.9

14.0

C3 Plant

B8

N3

-28.3

41.1

4.2

9.8

C3 Plant

B9

N4

-29.6

42.3

2.0

21.0

C3 Plant

B10

N4

-29.6

38.6

2.0

19.1

C3 Plant

B11

N4

-31.4

45.1

1.4

31.2

C3 Plant

B12

N4

-30.2

44.3

2.1

20.8

C3 Plant

B13

N4

-30.7

36.6

1.9

19.2

C3 Plant

B14

N5

-28.9

37.0

3.5

10.7

C3 Plant

B15

N5

-29.5

39.2

2.4

16.3

C3 Plant

B16

N5

-28.7

39.6

3.8

10.4

C3 Plant

B17

N5

-28.7

48.1

0.8

61.8

C3 Plant

B18

N6

-28.3

44.9

1.4

31.1

Dizygoyheca elegantissima

B19

N6

-30.6

42.2

1.9

22.2

Pteris semipinnata

B20

N6

-30.9

44.4

2.1

20.9

C3 Plant

B21

N6

-30.2

47.2

1.6

30.3

C3 Plant

B22

N6

-29.9

38.0

1.9

20.1

C3 Plant

B23

N6

-32.6

43.2

2.1

20.5

C3 Plant

B24

N6

-31.7

39.2

1.7

23.5

C3 Plant

B25

N6

-30.4

40.8

1.9

21.7

C3 Plant

B26

N6

-31.6

42.3

3.1

13.5

C3 Plant

B27

N6

-30.0

41.1

1.2

33.3

C3 Plant

B28

N6

-31.8

40.3

0.9

43.1

C3 Plant

B29

N6

-28.0

45.6

2.1

21.6

C3 Plant

B31

E1

-28.3

48.1

1.6

30.2

C3 Plant

B32

E1

-28.4

35.2

2.4

14.6

C3 Plant

B35

E1

-32.1

48.0

2.0

24.2

C3 Plant

B47

E1

Ave.

-29.9 ±1.3

42.3 ±3.5

2.4 ±1.1

21.7 ±10.7










Agricultural C3 plants

-28.2

42.0

2.8

15.1

Reeds

F3

E5

-30.2

35.7

2.3

15.3

Reeds

F5

E5

-28.7

38.0

3.4

11.1

Rice

F10

E5

-28.6

40.0

3.3

12.2

Rice

F11

E5

-28.9

39.4

3.5

11.1

Rice

F13

E5

-27.3

43.2

2.4

18.3

Banana

F12

E5

-25.8

44.1

3.5

12.6

Lotus

F14

E5

Ave.

-28.2 ±1.4

40.3 ±3.0

3.0 ±0.5

13.7 ±2.7










Mangroves

-28.9

45.3

2.0

22.5

Avicennia

B30

E2

-27.9

46.6

1.4

32.8

Kandelia obovata, Rhizophoraceae

B36

E3

-28.1

49.1

0.9

53.2

Kandelia obovata, Rhizophoraceae

B45

E4

-28.5

45.8

1.3

34.5

Kandelia obovato, Rhizophoraceae

B42

E4

-25.0

43.6

0.9

46.3

Bruguiera gymhorrhiza, Rhizophoraceae

B44

E4

-25.0

42.2

2.2

19.1

Acanthus ilicifolius, flowers

B37

E3

-24.0

40.7

3.0

13.4

Aegiceras corniculatum, Myrsinaceae

B38

E3

-28.4

46.7

1.3

36.6

Acanthus ilicifolius, Acanthaceae

B40

E3

-25.6

41.1

1.8

22.4

Acanthus ilicifolius, Acanthaceae

B41

E3

-28.3

45.4

1.7

27.2

Avicennia marina, Avicenniaceae

B43

E4

-28.1

44.2

1.0

45.2

Ficus microcarpa, Moraceae

B39

E3

-27.4

45.1

2.3

19.4

Ficus microcarpa, Moraceae

B46

E4




Ave.

-27.1 ±1.7

44.6 ±2.4

1.7 ±0.6

31.0 ±12.5










Ave.




-29.0 ±1.8

42.6 ±3.4

2.3 ±1.0

22.7 ±11.6





































C4 plants

General C4 plants

-13.1

35.5

4.3

8.2

C4 grass

F6

E5

-13.2

39.8

1.2

33.1

C4 grass

F1

E5

-13.7

40.0

1.7

23.9

C4 grass

F2

E5

-13.7

41.2

1.7

23.8

Panicum maximum Jacq

B33

E1

-13.3

38.8

1.5

26.1

C4 grass

B34

E1

-12.3

39.7

2.8

14.2

C4 grass

F4

E5

Ave.

-13.2 ±0.5

39.2 ±1.9

2.2 ±1.2

21.5 ±8.9










Agricultural C4 plants

-12.9

41.6

1.0

40.3

sugarcane

F7

E5

-12.8

42.4

1.6

25.9

sugarcane

F8

E5




-12.5

41.4

1.6

25.6

sugarcane

F9

E5




Ave.

-12.7 ±0.2

41.8 ±0.5

1.4 ±0.3

30.6 ±8.4










Ave.




-13.1 ±0.5

40 ±2.0

1.9 ±1.0

24.6 ±9.4









1   2   3   4   5   6   7   8

Похожие:

Variability of bulk organic δ iconChem 6v39: Organic Electronics (Special Topics in Organic Chemistry)

Variability of bulk organic δ iconI organic air pollutants I 1 Volatile Organic Compounds (vocs)

Variability of bulk organic δ icon11/13/2007 -the following are letters written by organic consumers in response to his comments that buying organic and local is dumb. Collin Peterson, chairman

Variability of bulk organic δ icon教科書為Advanced Organic Chemistry: Part B: Reaction and Synthesis (Advanced Organic Chemistry / Part B: Reactions and Synthesis)

Variability of bulk organic δ iconComparison of bulk Sea Surface and Mixed Layer Temperatures

Variability of bulk organic δ iconCirculation of the Mediterranean Sea and its Variability

Variability of bulk organic δ iconThe climate dynamics of total solar variability

Variability of bulk organic δ iconAsian Summer Monsoon Variability and Climate Change

Variability of bulk organic δ iconPrinciples of inorganic and organic chemistry

Variability of bulk organic δ iconIntroduction to organic chemistry chem 106

Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница