Прикладная математика




НазваниеПрикладная математика
страница1/4
Дата10.03.2013
Размер0.77 Mb.
ТипУчебное пособие
  1   2   3   4
И.С. Загузов,

В.Н. Головинский,

А.Ф. Федечев




ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ

(МЕХАНИКА)

ЧАСТЬ II.


МЕХАНИКА ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА


Самара

2002

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ


Кафедра математического моделирования в механике


И.С. Загузов,В.Н. Головинский, А.Ф. Федечев




ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ

(МЕХАНИКА)

ЧАСТЬ II.


МЕХАНИКА ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА


Учебное пособие для студентов


механико-математического факультета

специальностей «механика», «прикладная математика»


Издательство "Самарский университет"

2002
УДК 531

ББК 22.251

В 241


Загузов И.С.,Головинский В.Н., Федечев А.Ф. и др. Введение в специальность (Механика). Часть II. Механика деформируемого твердого тела: Учебное пособие. Самара: Изд-во «Самарский университет», 2002. 52 с.


В учебном пособии даны необходимые сведения о специальности «Механика», и ее основных дисциплинах – теоретической механике, аэрогидромеханике и механике деформируемого твердого тела. Приведены основные понятия и свойства материальных тел, принципы и методы изучения движения и взаимодействия тел, находящихся в различных состояниях. Рассмотрена история развития науки о механике от древности до наших дней. Особое внимание уделено современным проблемам всех составных частей механики.

Предназначено для студентов механико-математических факультетов университетов (специальности «Механика», «Прикладная математика») и может быть полезным для специалистов в области математического моделирования процессов механики.


УДК 531

ББК 22.251


Рецензенты: д-р физ.-мат. наук, проф. В.А. Соболев;

д-р физ.-мат. наук, проф. В.И.Астафьев


© Загузов И.С., Головинский В.Н.,

Федечев А.Ф. и др., 2002


© Изд-во «Самарский

университет», 2002


ПРЕДИСЛОВИЕ

Все предметы материального мира существуют по законам природы и по своим собственным, присущим только данным предметам, законо­мерностям. Но в этом богатстве жизни живого и неживого мира есть од­но свойство, общее для всех существ и объектов. Это прочность. Под прочностью материала принято понимать его способность сохранять­ся длительное время, не поддаваясь разрушению. В русском языке это слово "прок", т.е. это качество, которое всякий предмет должен иметь как бы "про запас".

Когда мы говорим о прочном материале в житейском смысле (проч­ная обувь, прочная семья), то понимаем под этим надежность, устойчи­вость вещей и отношений. Но если иметь в виду техническую терминоло­гию, то здесь надежность и прочность понимаются не одинаково. Надеж­ность подразумевает способность вещи более или менее долго служить, не меняя своих заданных функций; прочность – это способность сопро­тивляться различным механическим силам. Эти силы могут проявляться по-разному. Они могут быть следствием воздействия температуры, элек­трических полей, влажности, химических веществ, солнечной радиации и многого другого. Однако любое воздействие в конечном итоге приводит к механическим процессам в материале. Сопротивление этим процессам и является предметом науки о прочности материалов и конструкций. Эта наука внешне мало эффектна, в ней нет таких захватывающих идей и впечатляющих открытий, которые поражают воображение каждого. Когда на воздушной трассе появляется новый реактивный самолет, когда на Луну или одну из планет отправляется космический корабль, это понят­но и интересно всем, но мало кто представляет себе, что великолепные технические достижения последних лет в значительной мере связаны с преодолением основной трудности – сделать конструкцию достаточ­но прочной. Это относится не только к новой технике. Человечество было вынуждено решать проблему прочности во все времена своего су­ществования, но делалось это на ощупь, эмпирически. Опыт строитель­ства прочных сооружений накапливался веками и очень дорогой ценой. Это накопление опытных знаний на базе интуитивных представлений лю­дей о прочности постепенно переходило на научную основу, что приве­ло впоследствии к формированию и развитию теории сопротивления ма­териалов, теории упругости и пластичности, механики разрушения, тео­рии сооружений и т.д.



  1. ВВЕДЕНИЕ В МЕХАНИКУ ДЕФОРМИРУЕМОГО

ТВЕРДОГО ТЕЛА


1.1. Основные понятия о прочности материалов


В настоящее время учение о прочности – это большая разветвлен­ная наука о свойствах материалов и принципах их создания, с одной стороны, и о рациональном использовании материала в конструкции, с другой. Эти две стороны неразрывно связаны между собой, и сейчас ясно, что для дальнейшего прогресса в создании прочных материалов и прочных конструкций необходимо объединение ученых разных специаль­ностей – химиков, физиков, механиков. Необходимо соединение высоко­го теоретического уровня с пониманием реальных задач и четкой при­кладной направленностью исследований.

Одним из основных направлений науки о прочности является разработка новых материалов – материалов будущего, сочетающих в себе высокую прочность и пластичность, небольшой удельный вес и небольшую стоимость. Новые материалы жизненно необходимы для человечества, поиск этих новых материалов и новых принципов конструирования – увлекательная и благородная задача. В настоящее время нашей промыш­ленностью уже выпускаются непрерывные высокопрочные волокна бора и углерода, но они пока еще очень дороги. По оценке многих специалис­тов, при усовершенствовании технологии стоимость массового производ­ства угольных волокон будет существенно снижена. Уже сейчас из углепластиков изготовляют части самолетов и реактивных двигателей. По научным прогнозам за счет применения углепластиков вес транспортно­го самолета может быть снижен за первые 4-6 лет на 20%, а за после­дующие 10-15 лет – на 50%. В авиации и реактивной технике снижение веса особенно необходимо и достигается любой ценой. Известны слу­чаи, когда в угоду снижению веса конструкции идут даже на уменьшение её надежности (например, катастрофа с "Челенджером"), что уже недопустимо, так как сопряжено с риском для жизни людей. Но с расширением произ­водства стоимость новых материалов будет снижаться, и они с успехом найдут применение не только в воздухе, но также на земле и на воде, в конструкциях автомобилей, судов, в аппаратуре.

О прочности материала можно говорить на всех уровнях. Различают прочность атомных связей, прочность молекулы, кристалла, эле­мента, конструкции, сооружения, небесного тела. Прочностью облада­ют вода и стекло, металлическая балка и железобетонная труба, сте­бель растения и кирпичная колонна, кровеносный сосуд и стальной ка­нат, ядро атома и наша планета. Прочность – необходимое и единое для всего живого и неживого условие существования.

Трудно сказать, когда человеку впервые пришла мысль о прочнос­ти окружающих его вещей, но нет сомнения, что произошло это в доисторические времена. Первобытный человек сталкивался с разрушением своих жилищ, орудий труда, предметов обихода, оружия, и вся его борьба с живой и неживой природой всегда была связана с представле­ниями о прочности. Познание человеком прочности начиналось с окру­жающих его предметов в двух направлениях – в микро- и макромир. Человек держал в руке копье, палку или камень и задумывался о тай­не материала, о том, что делает камень крепче дерева, а железо креп­че камня. Соединение отдельных элементов между собой давало ему воз­можность строить сначала простые конструкции, а затем все более и более сложные сооружения. Веками продолжалось познание человеком тайн прочности в обоих направлениях. И если в микромир человек уг­лубился до мельчайших частиц атома, то по пути в макромир он уже задумывается о прочности планет, галактик, Вселенной в целом.

Конечно, познание – процесс диалектический. Вначале был опыт, затем теория, затем все более совершенствующийся опыт и усложняю­щаяся теория. И пределов познания нет. На первых порах поиск чело­веком прочности был интуитивным. Вначале люди учились у природы, создавая свои конструкции по аналогии с ее творениями, копируя их. Со временем знания накапливались – люди учились на опыте прошлых поколений и на своем собственном. Учитывались удачи, ошибки, просче­ты – это было время накопления эмпирического знания. И только два последних столетия составляют экспериментальный период в познании прочности. Лишь с появлением техники стала развиваться теория ма­териалов и сооружений.

Что же такое материаловедение? Прочность даже самого крупного сооружения в какой-то мере зависит от химических и физических процессов, которые происходят на молекулярном уровне. Потому, го­воря о материалах, приходится оперировать физическими величинами, огромными и совершенно ничтожными, переходить от химических пред­ставлений к чисто техническим, совершать скачки из одной области науки в другую; материаловедение, выражаясь современным языком, на­ходится на стыке наук. Твердые тела сохраняют свою форму благодаря химическим и физическим связям, существующим между их атомами и мо­лекулами. Любое тело можно вывести из строя несколькими различными путями - механическим разрушением, плавлением или воздействием хи­мическими реагентами. Так как в каждом случае должны быть разорваны какие-то внутренние связи одного типа, можно было бы предположить, что существует некая простая связь между названными формами разру­шений. Сегодня, когда о природе межатомных взаимодействий химики и физики знают довольно много, им не так уж трудно дать объяснение прочности и другим механическим свойствам материалов. Дальнейшие исследования показали, что прочность действительно связана с химическими взаимодействиями, но связь эта косвенная и обнаружить ее средствами классической химии или физики невозможно. Оказалось, что специалисты не только нуждались в интерпретации результатов этих наук средствами классической теории упругости, но необходимо было ввести еще и такие новые и очень важные понятия, как дислокация и концентрация напряжений. В последние два века уместились высшие достижения человеческого гения, величайшие открытия законов приро­ды, создание и развитие различных отраслей механики, занимающихся исследованием прочности: сопротивление материалов, теория упругости и пластичности, строительная механика, теория сооружений и др.

Благодаря познанию тайн прочности человек не только стал стро­ить надежнее, с неизмеримо меньшим количеством аварий в машинах, механизмах, зданиях, сооружениях, но и сумел проникнуть в структуру материала и найти в нем новые резервы. Достаточно сказать, что за прошедшие 50 лет прочность такого металла, как сталь, например, возросла более чем в 10 раз. Однако металлам не принадлежит монополия на прочность. Лучшими сочетаниями удельного веса и прочности обладают не металлы, а самые прочные из известных веществ – волокна бора и углерода. Резерв прочности материалов огромен, а степень освоения его зависит от уровня развития технологии и от уровней развития науки о прочности. В настоящее время уже достигнуты огромные успехи, свидетельство чему – уникальные конструкции телебашен, космических ракет, подводных кораблей, буровых установок и т.п. Но жизнь ставит новые зада­чи, рождаются и новые технические потребности. Нужны новые научные результаты, новые теории. Теория и практика в познании прочности идут вперед.


1.2. История развития механики деформируемого твердого тела


История цивилизации – это история проникновения человека в тайны природы. Век за веком, тысячелетие за тысячелетием люди постигали одну тайну за другой. Несчетное количество поколений сменилось, пока человек научился добывать огонь, строить жилища, ткать одежду. При помощи огня человек стал выплавлять железо, а из железа делать орудия труда, чтобы они были прочнее, надежнее, долговечнее дере­вянных и каменных. И при изготовлении каждого устройства, каждой вещи неизбежно возникали проблемы прочности, причем наиболее остро они вставали в строительном деле. И всегда, во все века один общий вопрос занимал умы ученых: "Почему любое твердое тело вообще способно сопротивляться приложенной к нему нагрузке?" Ответ на него представляет собой наглядный пример того, как без применения изощ­ренных приборов может быть теоретически решена научная проблема (исключая, конечно, ее молекулярный аспект). Это говорит о сложнос­ти предмета о прочности. Ведь недаром первый существенный вклад в решение проблемы механически деформируемого твердого тела внесли такие выдающиеся умы, как Галилей и Гук. Нужно сказать, что именно они впервые четко сформулировали задачу.

История хранит много примеров уникальных строительных сооруже­ний, выполненных человеческими руками. В Египте на Ниле была возведена Асуанская ирригационная система с плотинами, водохранилищами, каналами. В Китае в V1 веке до н.э. реки Хуанхэ и Янцзы были соеди­нены Великим каналом протяженностью свыше 1000 км. Три тысячи лет назад человек строил крепости, дворцы, дороги, храмы, театры, ста­дионы.

Искусство античных зодчих достигало совершенства. Как венец творения человеческих рук возвысились над древним миром семь чудес света: статуя Зевса в Олимпии, висячие сады Вавилона, мавзолей в Галикарнасе, Колосс Родосский, маяк в Александрии, храм Артемиды в Эфесе и египетские пирамиды. Античная строительная техника достигла больших высот. В IV веке до н.э. уже применялся известковый раствор, в III веке до н.э. – пуццолановый раствор из измельченной породы вулканического происхождения. На основе этого раствора вскоре появился бетон. В Китае с IV века до н.э. начала строиться Великая Китайская стена протяженностью 4000 км и шириной 10 м, по верху которой передвигались колонны войск с повозками.

Создания зодчих Древнего Востока поражают не только размерами и гармонией, но и сочетанием архитектурного решения сооружения с его функциональным назначением. Расцвет архитектурного искусства в Древней Греции, а затем в Риме привел к зарождению теории архитек­туры и строительного искусства.

Одним из первых теоретиков строительства принято считать римс­кого архитектора и инженера второй половины I века до н.э. Марка Витрувия. Его фундаментальный труд "Десять книг об архитектуре" представляет собой подлинную энциклопедию строительного дела. Очень многие рекомендации Витрувия и сейчас звучат в высшей степени совре­менно. И все же, хотя проблема прочности существовала всегда, хотя человечество имело уже тысячелетний опыт строительства, теории строительной механики не существовало. Поиск прочности происходил пока еще интуитивно. Методом многочисленных проб и ошибок шел чело­век к познанию тайн материала. Это познание начиналось с анализа причин разрушения.

Восхищаясь сооружениями античных мастеров, нам следует помнить о том, что сроки строительства всегда были неимоверно высоки. Возве­дение одного храма или дворца длилось десятки, а иногда и сотни лет. При этом строительство обходилось очень дорого, с затратой огромно­го количества ценнейших материалов, при неограниченной эксплуатации рабского труда. Наконец, и это менее известно, строящиеся сооружения часто разрушались, и строители учились на уроках аварий. В этом пла­не поучительно разрушение амфитеатра в Фидене в 27 году н.э. Даже в самых современных сооружениях древних можно найти грубые сшибки, свидетельствующие о незнании ими основ сопротивления материалов, строительной механики и теории сооружений. Другая серьезная причина разрушений – землетрясения. И храм Артемиды, и Галикарнасский мавзолей, и Родосский Колосс простояли бы гораздо дольше, если бы строи­тели наряду с гибким основанием обеспечили бы пространственную жест­кость конструкций. Сооружения нужно было рассчитывать на ветровую нагрузку и устойчивость, в связи с чем фундаменты и основания выпол­нять с учетом работы их на опрокидывание в сочетании с сейсмическими условиями. Нужно отметить, что недостаток знаний о прочности в стро­ительстве часто ограничивал зодчих в выборе архитектурных форм. По­вальное увлечение античных архитекторов колоннадами возникло отнюдь не только из эстетических соображений, а еще и потому, что не было материалов, работающих на изгиб для перекрытия больших пролетов. Достаточно сказать, что самая длинная балка, перекрывающая вход в Акрополь, была длиною менее 4 м, а самая длинная плита – над усы­пальницей в пирамиде Хеопса – немногим более 5 м. Поэтому и прихо­дилось ставить колонны близко друг к другу. И лишь позже уже римля­не изобрели такие конструкции, как арки и своды, в которых камень работает на сжатие, что позволило увеличить пролеты, а также изме­нить облик сооружений.

Аварии происходили не только в древние и средние века, они продолжались (конечно, в меньшем количестве) вплоть до нашего времени. Каждая авария возбуждала у специалистов потребность в новом поиске, ставила новые задачи, прибавляла новые знания. Когда же знаний не хватало, в инженерные расчеты вводили (и вводят сейчас) так называе­мый коэффициент запаса. Поначалу расчет производили весьма приближенно. Определяли нагрузку, которую должен был выдержать элемент при эксплуатации, и подбирали такие его размеры, которые позволили бы выдержать нагрузку, большую эксплуатационной, скажем, в 100 раз. Это значит, что у создаваемого элемента коэффициент запаса равен 100. По мере развития науки этот коэффициент уменьшается все больше, уступая место точным численным величинам, характеризующим то или иное открытое явление, тот или иной процесс в материале, элементе, конструкции, сооружении. Потребность уменьшить коэффициент запаса диктовалась многими факторами. Со временем исчезла дешевая рабочая сила, которую можно было эксплуатировать безгранично. Возникла не­обходимость экономить материальные средства и ресурсы. Чтобы стро­ить дешевле, с меньшими трудовыми и материальными затратами, потре­бовались поиски резервов в материале, в формах конструкции, техноло­гии строительства. В авиации и космонавтике большие запасы прочности связаны с большим весом летательных аппаратов, а, следовательно, с меньшей полезной нагрузкой. Следовательно, запасы прочности должны быть как можно меньшими, тогда строить можно будет быстрее, дешевле, с большей экономической отдачей. По сути дела, вся история науки о прочности была историей борьбы за уменьшение коэффициента запаса прочности. Сейчас этот коэффициент стал весьма небольшой величиной (от полутора до трех). Но для этого понадобились века.

Полторы тысячи лет прошло со времени исчезновения с лица зем­ли шести из семи чудес света, когда итальянский художник и ученый эпохи Возрождения Леонардо да Винчи (1452-1519) начал эксперименты по изучению прочности материалов. Леонардо да Винчи был не только замечательным художником, но и талантливым механиком, математиком и инженером, которому обязаны важными открытиями самые разнообразные отрасли науки и техники.

С опытов Леонардо начался экспериментальный период в развитии строительной механики. Леонардо был неутомимым экспериментатором. Производя многочисленные опыты, он фиксировал все в своих записных книжках. Вызывает удивление тщательность, с которой описывались ус­ловия и технология проведения экспериментов. Леонардо испытывал на изгиб балки на двух опорах, консольные балки, колонны. Он пришел к выводу, что "несколько малых опор, соединенных вместе, выдержат больший вес, чем, если они будут разделены". Леонардо да Винчи провел интересные опыты на растяжение металлических проволок, струн, различных волокон. Он сконструировал оригинальное приспособление для определения сопротивления железной проволоки разрыву. Конечно, не все выводы Леонардо правильны, есть в них противоречия, ошибки. Поэтому вряд ли можно говорить о значительной практической или тео­ретической ценности этих опытов. Однако они имеют немалое значение для истории механики, которое состоит в том, что впервые поиск проч­ности твердых деформируемых тел приобрел форму сознательного, спе­циально заданного исследования.

Новый значительный шаг в развитии представлений о прочности через 120 лет после Леонардо да Винчи суждено было сделать еще одно­му титану эпохи Возрождения – Галилео Галилею (1564-1642). Великий итальянский физик, механик и астроном Галилей признан одним из ос­новоположников естествознания. Известны его работы в области астро­номии (борьба за учение Коперника, а затем отречение от него). За­служили признания его работы в области динамики. А вот работы его в области сопротивления материалов менее известны. Между тем именно Галилей свел большой круг вопросов, связанных с прочностью и разру­шением материалов, в одну область знания. Он впервые указал на не­обходимость построения собственной теории, создания собственной нау­ки – сопротивления материалов. Из своих опытов Галилей сделал один важный вывод: "Если мы ... построим большую машину из того же самого материала и точно сохраним все пропорции меньшей, то в силу самого свойства материи мы получим машину, соответствующую меньшей во всех отношениях, кроме прочности и сопротивляемости внешнему воздействию: в этом отношении, чем больше будет она по размеру, тем менее будет она прочна". Это явление, названное впоследствии масштабным фактором, учитывается и сейчас в расчетах строительной механики. В действующих стандартах на испытание строительных материалов вводятся переводные коэффициенты для показателя прочности. Чем меньше лабораторный об­разец, тем больше уменьшающий коэффициент надо вводить, чтобы полу­чить необходимую прочность промышленного элемента или конструкции.

Галилей предлагал использовать пустотелые элементы. Он заключает, что при сравнении сплошной и трубчатой балок, имеющих одинаковую площадь сечения, трубчатая будет во столько раз прочнее, во сколько раз диаметр трубы больше диаметра сплошной балки. Галилей изучал только два ви­да деформации – растяжение и изгиб на всевозможных элементах из различных материалов, объясняя причины их прочности и разрушения. Нужно отметить, что Галилей во всех случаях изучал состояние материалов в момент разрушения. Прочность, по Галилею, была связана с кри­тическим, предельным состоянием балки. Ученый пытался понять, поче­му колонна или балка разрушается, какая сила вызывает это разрушение. Поведение же нагруженного элемента в нормальном рабочем состоянии, физико-механические процессы, происходящие при обычных нагрузках, бы­ли Галилею неведомы. Галилей пытался выйти за рамки умозрительных рассуждений и прийти к теоретическому обобщению. Но для этого ему не хватало математического аппарата и данных теоретической механики. Поэтому нельзя сказать, что он построил теорию, но он подготовил поч­ву, на которой в дальнейшем выросла первая теория прочности.

Немногим позднее вопросами прочности твердых тел занимался фран­цузский ученый Эдм Мариотт (1620-1684). При про­ектировании Версальского дворца он проводит большие эксперименты по растяжению и изгибу самых различных материалов. Мариотт, изучая прочность деревянных и стеклянных балок, проверил результаты Галилея и убедился в их справедливости. Испытывая балки, заделанные жестко двумя концами, он обнаружил, что прочность таких балок увеличивалась вдвое по сравнению со свободно опертыми балками. Опытами Мариотта заканчивается первый, экспериментальный период изучения сопротивления материалов. Результаты научных поисков этого периода принесли ог­ромную пользу и не утратили своего значения до сих пор.

Наука набирала темпы, росло число ученых, возникла потребность в общении их друг с другом, в обсуждении научных проблем. В разных странах Европы организуются научные общества: в Италии, Англии, Франции, позже России и Германии. В 1662 году в Лондоне было официально открыто знаменитое Королевское общество, в число членов которого (по рекомендации известного английского физика и химика Роберта Бойля) был принят Роберт Гук (1635-I703).

Гук был талантливым механиком, он создал немало приборов, меха­низмов, приспособлений. Его исследования были настолько разносторонни и многогранны, что неизбежно вторгались в сферы деятельности дру­гих ученых, работавших на передовых рубежах науки. Поэтому часты были случаи cпopoв Гука за свой приоритет, например с И. Ньютоном. И только один закон по праву носит его имя и принадлежит ему без всякой конкуренции. Это закон упругости материальных тел, известный под названием закона Гука. Суть его можно выразить в трех словах:

"Деформация пропорциональна нагрузке", или, как записал Гук в своей криптограмме: "Каково удлинение , такова и сила". Этот закон был вы­веден Гуком в 1676 году после проведения ряда экспериментов, а именно: а) удлинения железной проволоки; б) растяжения винтовой пружины; в) сокращения спиральной часовой пружины; г) изгиба балки, закреплен­ной одним концом и нагруженной на другом конце. Убедившись во всех опытах в действии своего закона, Гук признал его всеобщим.

Чтобы понять сущность закона Гука, обратим внимание на исследования Ньютона, который так сформулировал его в качества основного (третьего) закона механики: действие равно противодействию по величи­не и противоположно ему по направлению. Это означает, что каждая си­ла, воздействующая на тело, должна быть сбалансирована точно такой же по величине силой противоположного направления. При этом природа сил не имеет никакого значения. Задача любой механической конструкции состоит в сохранении её целостности, для ее выполнения в конструкции должны каким-то образом возникать силы, которые могли бы уравновесить внешние нагрузки, действующие на нее. Причем прежде чем начать со­противляться внешним нагрузкам, в твердых телах должны возникнуть какие-то смещения, то есть, чтобы оказать какое-либо сопротивление, они должны в большей или меньшей степени поддаться нагрузке. Под сме­щением понимается не перемещение тела как целого, без изменения его формы, а именно геометрические искажения самого тела, т.е. тело в це­лом или отдельные его части становятся короче или длиннее вследствие растяжения или сжатия внутри самого тела. В природе не существует аб­солютно жесткого материала, все тела в той или иной мере обладают по­датливостью. Ветки деревьев под тяжестью прогибаются на значительную величину, а прогиб мостов под тяжестью передвигающихся по ним грузов настолько мал, что незаметен невооруженным глазом. Но как смещения ветвей, так и отклонения моста могут быть охарактеризованы количест­венно. Пока смещения, вызванные внешними нагрузками, не слишком вели­ки и не мешают конструкции выполнять свои задачи, они определяют обя­зательные характеристики конструкции. Кто летал самолетом, может быть замечал, как смещаются вверх-вниз концы его крыльев. Конструктор спе­циально наделил при проектировании крыла его такими свойствами. Ясно, что смещения, будь они малыми или большими, создают силы сопротивле­ния. Эти силы определяют жесткость твердого тела, его способность сопротивляться внешним нагрузкам. Другими словами, в твердом теле возникают именно такие смещения, которые как раз достаточны, чтобы уравновесить приложенные внешние нагрузки. Это происходит совершенно автоматически.

Как же возникают эти силы? Дело в том, что в любом теле атомы химически связаны между собой. Эти связи условно можно представить в виде пружинок, хотя, конечно, ничего "твердого" в обычном смысле этого слова в промежутках между атомами не существует (рис. 1).




а б в

Рис. 1


Те же силы, которые делают тело твердым, определяют и его химические свойства. Разрушение химических связей освобождает энергию пороха и бензина, те же связи делают резинку и сталь упругими и прочными. Когда твердое тело полностью свободно от механических нагрузок (что бывает, строго говоря, очень редко), химические связи, или пружины в нашей модели, находятся в нейтральном положении (рис.1,а).

Любая попытка сблизить атомы (это мы называем сжатием) или оттянуть их друг от друга (что обычно называется растяжением) сопровождается не­большим укорочением или удлинением межатомных пружин во всем объеме металла (рис. 1, б, в). При этом ядра атомов считаются жестки­ми, кроме того, в твердом теле атомы обычно не обмениваются местами, по крайней мере при умеренных, или "безопасных" нагрузках. Таким об­разом, податливость твердого тела определяется межатомными связями. Жесткость этих связей может изменяться в широких пределах, но для большинства веществ она намного выше, чем у тех металлических пружин, с которыми мы встречаемся в повседневной жизни. Очень часто величины межатомных сил весьма и весьма велики, что и следует ожидать, если вспомнить о силах, которые могут быть получены при разрыве химичес­ких связей горючих или взрывчатых веществ. Хотя абсолютно жестких тел, т.е. таких, которые под действием внешних сил совершенно не из­меняют своей формы, в природе не бывает, смещения во многих предме­тах часто оказываются очень малыми. Так, например, высота обычного строительного кирпича под нагрузкой 80 кг уменьшается примерно на 0,510-4 см. При этом два любых соседних атома в кирпиче станут ближе один к другому на расстояние 210-14 см или 0,210-5  (один ангст­рем  = 10-8 см). Величина эта невероятно мала, но она соответствует совершенно реальным перемещениям атомов. Конечно, в крупных конструк­циях перемещения элементов не всегда малы. Канаты, на которых висит мост через залив Форт (Шотландия), все время растянуты примерно на 0,1%, что при их общей длине почти 3 км составляет около 3 м. В этом случае атомы железа, расстояние между которыми в ненапряженном состоянии около 2 , удаляются на величину 0,210-2 . Опыты показа­ли, что смещения атомов в металлах, например, строго пропорциональны величине, на которую удлиняется (или укорачивается) весь кусок метал­ла. В этих экспериментах наблюдались изменения межатомных расстояний примерно до 1%.

Все эти рассуждения подводят нас к понятиям "напряжение" и "де­формация".

Напряжение – это нагрузка, отнесенная к единице площади, т.е.

=Р/F,

где  – напряжение, Р – нагрузка, F – площадь. Если обратиться к примеру о строительном кирпиче с поперечным сечени­ем 25х12 см под нагрузкой 80 кг, то сжимающее напряжение в нем бу­дет =80/3000,27 кг/см2. Точно такое же напряжение вызовет в кирпичной опоре моста (сечение 10х6 м) проезжающий по нему локомотив весом 160 т. Следовательно, с полной определенностью можно сказать, что в обоих случаях напряжения в кирпиче примерно одинаковы, и если один кирпич не разрушился под тяжестью в 80 кг, то и опора моста не разрушится под весом локомотива в 160 т.

Напряжение выражается в кгс/мм2 , кгс/см2 , Н/м2, Па и т.д.

Деформация – это величина удлинения стержня под нагрузкой, отнесенная к начальной длине. Очевидно, что отрезки различной длины при одной и той же нагрузке получают в конструкциях различное удлинение. Если обозначить деформацию через  , то

 =/,

где  – полное удлинение, а  – начальная длина. Так, если стержень длиною 100 см под нагрузкой удлиняется на 1 см, то его деформация составляет 1%. Такая же деформация будет у стержня длиной 50 см, рас­тянутого на 0,5 см и т.д. Деформация, так же как и напряжение, не зависит от размеров образца. Деформация есть отношение удлинения к начальной длине и, следовательно, она безразмерна. Роберт Гук был первым, кого осенила догадка о том, что происхо­дит при нагружении твердого тела. Он подробно изучал поведение часо­вых пружин и маятников. Ничего не зная, конечно, о химических и элек­трических межатомных связях, Гук понял, что часовая пружина всего лишь частный случай поведения любого твердого тела, что в природе нет абсолютно жестких тел, а упругость является свойством всякой кон­струкции, всякого твердого тела. Тогда Гук и заявил: "Каково удлине­ние, такова и сила". Иными словами, напряжение пропорционально дефор­мации, и наоборот. Так, если упругое тело, например струна, удлиняет­ся на 1 см под нагрузкой 100 кгс, то под нагрузкой 200 кгс удлинение составит 2 см и т.д. Это утверждение и стало известно как закон Гука. Оно является краеугольным камнем всей техники.

При очень больших деформациях (скажем 5-10%) от пропорциональности между напряжением и деформациями не остается и следа. Но обыч­но деформации не превышают 1%, а в этом диапазоне зависимость меж­ду напряжениями и деформациями линейна. Более того, для малых дефор­маций процесс нагрузки и разгрузки обратим, т.е. кусок материала мож­но нагружать и снимать с него нагрузку тысячи и миллионы раз с одним и тем же результатом. Наглядный пример этому – пружинка балансира в часах, которая повторяет один и тот же процесс (напряжение и снятие нагрузки) 18 тысяч раз в час. Такой тип поведения твердого тела под нагрузкой называется упругим. В 1678 г. Гук писал: "Сила всякой пружины пропорциональна ее растяжению, т.е., если сила растянет или согнет пружину на некоторую величину, то две силы согнут её вдвое больше, три силы согнут втрое больше, и так далее". В том же 1678 г. вышла из печати работа Гука "О восстановительной способности или об упругости", содержащая описание ряда опытов с упругими телами. Это была первая книга по теории упругости, где Гук отмечает, что незави­симо от вида нагрузки (растяжения или сжатия) – изменения размеров тела пропорциональны приложенной силе. Гук проводил много опытов и с деревянными балками. Изготовив балку из дерева, он измерял ее прогиб под действием в различных частях балки различных весов. При этом он, например, пришел и к такому великому выводу о том, что на выпуклой поверхности балки волокна при изгибе растягиваются, а на вогнутой – сжимаются. Прошло очень много времени, пока инженерам стало ясно значение этого, как теперь представляется, очевидного свойства материала.

Итак, деформация пропорциональна нагрузке, и наоборот. Гук счи­тал, что его закон действует всегда – при любых нагрузках и в любых материалах. И здесь, в полном соответствии со своим увлеченным характером, он не довел это исследование до конца и допустил неточность. Но об этом по­том. Современники его не опровергали: главное, что был сделан очень важный шаг. Бал найден основной закон сопротивления материалов. Рас­суждения Леонардо да Винчи и Галилео Галилея постепенно становились на научную основу, благодаря которой со временем они будут описаны математическими формами.

Гук установил, что удлинения, укорочения, прогибы как пружин, так и других упругих тел пропорциональны приложенным к ним напряже­ниям. Они зависят, конечно, от геометрических размеров и формы конструкции, а также от того, из какого материала она сделана. Мы не знаем, понимал ли Гук, в чем разница между упругостью как свойством материала и упругостью как функцией формы и размеров конструкции. Дело в том, что можно получить сходные кривые "нагрузка - удлинение" и для куска резинового шнура и для стальной пружины (а ведь это материалы с различными прочностными свойствами). Это сходство явилось источником бесконечных заблуждений. Примерно столетие после Гука су­ществовала эта путаница: не всем была ясна разница между двумя поня­тиями упругости. И это длилось до тех пор, пока в 1800 г. английский ученый Томас Юнг (1773-1829 гг.) не пришел к выводу, что если пользоваться не абсолютными значениями сил и смещений в конструкциях, а напряжениями и деформациями, то закон Гука можно записать в следую­щем виде: напряжение/деформация = / ~ const. Юнг заключил, что эта константа является неотъемлемой характе­ристикой каждого химического вещества и представляет его жесткость. Эта константа упругости называется теперь модулем Юнга Е=/. Следовательно, Е описывает жесткость материала как такового. Жесткость любого заданного объекта зависит не только от модуля Юнга материала, но и от геометрической формы объекта.

Все встало на свои места, когда английский ученый Томас Юнг показал, что для каждого материала существует постоянная величина, характеризующая способность его сопротивляться воздействию силы. Эта величина и была названа модулем упругости, или модулем Юнга. Юнг за­метил, что сжатие бруса всегда сопровождается его утолщением, а значит, увеличением площади его поперечного сечения. Растяжение же делает брус или проволоку тоньше, следовательно, уменьшает площадь сечения.

Рассуждения Юнга начались с переосмысления закона Гука и его опытов. Если с удвоением нагрузки в проволоке или пружине удлинение удваивается, а с утроением – утраивается и т.д., то частное от деле­ния силы на удлинение будет величиной постоянной. Для того чтобы абстрагироваться от размеров элемента и вида нагрузки, Юнг предложил использовать не абсолютные, а относительные значения силы и де­формации (удлинения и укорочения). Действующую на элемент силу (рас­тягивающую или сжимающую) он приводил к единице площади сечения. Не­много позднее эта относительная величина была названа напряжением. Вместо же абсолютной деформации, например удлинения, Юнг вводит ве­личину относительной деформации, представляющую собой отношение уд­линения, максимально возможного для данного материала, к первоначаль­ной длине. Другими словами, если относительная деформация равна еди­нице или 100%, то это значит, что элемент до своего разрушения способен удлиниться вдвое. При этом имеется в виду, что закон Гука действует в материале до самого разрушения.

Модуль упругости характеризует важнейшее свойство конструкционного материала – его жесткость. Резина, дерево, стекло, сталь обла­дают различной жесткостью. Модуль упругости резины равен 70 кгс/см2 , для стекла он в 1000 раз больше. Дерево вдвое жестче стекла, а сталь в 14 раз жестче дерева. Кстати, значение модуля упругости для стали, равное 2106кгс/см2, также определил Юнг (правда, в других единицах – фунтах на дюйм). Физический смысл модуля упругости, который и сей­час не является чем-то очевидным, во времена Юнга остался непонятным большинству современников. Да и сам Юнг дает этому понятию не совсем четкое определение. Это был не единственный случай, когда Юнг недос­таточно точно выражал свои мысли. Очевидно, из-за этой своей черты он не добился больших успехов на педагогическом поприще, но личность его как ученого представляет большой интерес.

Громадная важность модуля упругости для техники объясняется двумя причинами. Во-первых, нам нужно точно знать возникающие под нагрузками смещения как в конструкции в целом, так и в различных ее частях (т.к. под действием рабочих нагрузок взаимодействие деталей в конструкции не должно нарушаться, а в таких расчетах и нужны в пер­вую очередь величины Е ). Во-вторых, знать модули упругости необ­ходимо не только для того, чтобы рассчитывать деформации конструкции, но и для того, чтобы деформации ее отдельных элементов были согласо­ванными (тогда и напряжения между этими элементами будут распределяться так, как мы хотели этого, проектируя конструкцию).

Определяя модуль Юнга, мы разделили напряжение на безразмерное число – деформацию, следовательно, модуль имеет размерность напряжения. Если деформация равна 1 (100 %), то напряжение оказывается рав­ным модулю упругости. Стало быть, модуль упругости можно считать так­же напряжением, которое удваивает длину упругого образца. Легко себе представить, что величина модуля упругости должна быть большой, обычно она по крайней мере в 100 раз больше разрушающего напряжения: ведь материалы, как правило, разрушаются, когда их упругая деформация превышает 1 %.

Если взглянуть на величины Е , то нетрудно понять, почему ог­ромное количество твердых химических соединений не может быть использовано в качестве конструкционных материалов. Мы хотим, чтобы наши конструкции были как можно жестче, ведь колебания сооружений (мостов, зданий, башен) и без того велики. Сталь – наиболее жесткий из сравнительно дешевых материалов, и в этом одна из причин ее ши­рокого использования.

Увлечение Юнга сопротивлением материалов не ограничилось открытием модуля упругости. Он изучал кручение круглых стержней, изгиб консольных балок и дал много ценных рекомендаций. Он первым заявил, что закон Гука действует только до определенного предела, а затем упругая деформация не проявляется и становится необратимой. Юнг не определил, как развивается зависимость между нагрузкой и деформацией за пределами упругости, но он указал на существование этой облас­ти. Наконец, Юнг занимался изучением сложнейшего вида деформации тел – разрушения ударом. Так что это совсем неплохо для медика, увлекавшегося физикой и философией. И все-таки самым значительным от­крытием Юнга остается модуль упругости, без которого не обходится ни один инженерный расчет элемента, конструкции, сооружения – от стола до железнодорожного моста, до космической ракеты.

Следует четко усвоить, что прочность и жесткость не одно и то же. Жесткость (модуль Юнга) показывает, насколько податливым являет­ся материал. Прочность характеризуется напряжением, необходимым для того, чтобы этот материал разрушить. Прежде всего существует прочность на разрыв. Это напряжение, необходимое для того, чтобы разорвать материал на части, разрушив все межатомные связи вдоль поверхности разрыва. Стержень из очень прочной стали может выдержать растягивающее напряжение до 300 кгс/мм2. А вот обычный кирпич выдержит лишь 0,4-0,6 кгс/мм2. Следовательно, прочность материалов, используемых в механике, может изменяться примерно в тысячу раз.

Говоря о прочности, имеют в виду прочность на разрыв, хотя материалы чаще работают на сжатие, чем на растяжение. Казалось бы, если мы пытаемся прижать атомы один к другому, это не должно вызывать разрушения. Однако разрушения происходят, хотя представляют собой явления более сложные, чем разрыв. Под действием сжимающей нагрузки материал может ломаться самым различным образом.

Как работает конструкция на растяжение и сжатие, понять доволь­но легко, но как те же самые растяжение и сжатие позволяют балкам выдерживать нагрузки – это далеко не очевидно. А между тем разного рода балки составляют значительную долю всех конструкций, с которыми мы повседневно сталкиваемся. Самая обычная половая доска, которая чуть изгибаясь, выдерживает значительный вес мебели и людей – наглядный пример балки. История расчета изгибаемой балки – одного из наиболее распространенных элементов в технике – является наглядным примером попыток перейти от общих умозрительных рассуждений к решению практи­ческих задач.

Расчет балки на прочность при изгибе был сделан Кулоном в его знаменитом труде "О применении правил максимума и минимума к некото­рым вопросам статики, имеющим отношение и архитектуре". Знаменитый французский ученый Шарль Огюстэн Кулон (1736-1806) широко известен прежде всего как создатель основного закона электростатики, выражаю­щего зависимость силы взаимодействия двух неподвижных точечных электрических зарядов от расстояния между ними. Имя Кулона носит не только этот закон, но и единица электрического заряда. Но Кулон и в строительную механику внес такой вклад, которого было бы достаточно для того, чтобы обеспечить ему бессмертие, даже если бы он не открыл закон электростатики. Имея большой инженерный опыт и талант исследо­вателя, Кулон после долгих лет практической работы по строительству различных сооружений написал научную работу, содержавшую, кроме расче­та изгибаемой балки, методы расчета подпорных стен и сводов. Создан­ные Кулоном более двухсот лет назад, эти методы применяются в практи­ке проектирования до сих пор почти без изменения. Кулон построил соб­ственную стройную теорию сводов, которая заняла достойное место в строительной механике. Кулон занимался изучением сложного вида дефор­мации – кручения. Его формулы по кручению для стержней малого диамет­ра также применяются до сих пор. Наконец, Кулон, изучив разрушение сжатых элементов, приходит к выводу, что главной причиной разрушения является сдвиг. Такое предположение стало основой для утверждения нового взгляда, названного впоследствии третьей теорией прочности.

Блестящие работы Галилея, Гука, Мариотта, Кулона, других уче­ных ХVII - ХVIII вв. подготовили почву для возникновения инженерной науки. Особенно бурно она развивается во Франции. На первое место из всех отраслей техники вырыва­ется военная. Поэтому инженерное дело в своей основе было прежде всего делом военных специалистов. Основные технические термины также имеют "военное" происхождение. Так, слово "машина" вначале употреб­лялось в значении орудие, снаряд, военное приспособление, а слово "инженер" означало изобретатель пушек. В 1729 г. для учебных заведений по подготовке специалистов фортификационных и других военных соо­ружений французский ученый Белидор издал учебник "Инженерная наука". Это был первый в мире учебник по инженерному делу, посвященный строительству и архитектуре. Он переиздавался в течение 102 лет! Последнее издание вышло в 1830 г. почти без изменений. Такую невидан­ную популярностъ можно объяснить фундаментальностью построения, а также широким охватом как теоретических, так и практических вопросов строительства. Содержал учебник и сведения по сопротивлению материа­лов. Белидор приводит расчеты сводов, подпорных стен, балок, таблицы прочности материалов, применяющихся в строительстве. В 1798 г. инже­нером мостов и дорог Жираром издается первый учебник по сопротивлению материалов – "Аналитический трактат о сопротивлении твердых тел". В 1794 г. в Париже открывается знаменитая Политехническая школа, основоположником которой является знаменитый математик Гаспар Монж (1746 - 1818). Первыми педагогами в ней были крупнейшие французские ученые – Лагранж, Монж, Пуассон и другие. Надо сказать, что правительство Наполеона Бонапарта поощряло развитие науки и техники. Сам Наполеон, по свидетельству современников, серьезно увлекался матема­тикой и обладал большими способностями в этой области.

Первое потрясение основ галилеевской науки о прочности связыва­ют с именем знаменитого французского инженера и ученого Луи Мари Анри Навье (1785-1836). Получив образование в Школе мостов и дорог, он на­чал работать инженером-строителем. Очень скоро обнаруживаются большие теоретические способности молодого инженера, его талант исследовате­ля-теоретика. Навье публикует ряд своих разработок, которые обобща­ет затем в курсе лекций, созданном в 1826 г. К этому времени он был уже академиком. Книга Навье стала важной вехой в истории строитель­ной механики. Было положено начало теории упругости. Вместо принципа расчета по предельному, разрушающему состоянию материала утверждался принцип рабочего состояния.

Область нагрузок, где закон Гука действует безукоризненно, называют упругой стадией работы материала. Затем при возрастании нагрузки в материале начинается пластическая деформация, пропорциональ­ность между силой и деформацией исчезает, возникают более сложные яв­ления, которые в XIX в. невозможно было описать математически. В ос­нову новой теории Навье – теории упругости – было положено полное принятие закона Гука. Навье вводит понятие напряжения, т.е. силы, действующей на единицу площади сечения элемента, к которому эта сила приложена. Напряжение – это, таким образом, удельное давление (кгс/см2). Если на колонну размером 20х20 см нагружено, например, 40 т груза, то это значит, что напряжение сжатия в колонне составит 100 кгс/см2. Навье предлагал установить расчетные допускаемые напряжения, при ко­торых конструкция может работать надежно, и на эти напряжения вести расчет. Естественно, допускаемые напряжения должны быть значительно меньше разрушающих. Если стальная балка разрушается при напряжении 4000 кгс/см2, то Навье предлагает при изгибе принимать допустимое напряжение равным 1300 кгс/см2. Размеры балки при расчете принимают такими, чтобы во время эксплуатации она имела напряжение не выше допустимого. Расчет по допускаемым напряжениям господствовал в стро­ительной механике более века, а в некоторых сооружениях применяется до сих пор.

Уравнения равновесия твердого тела, выведенные Навье, это уравнения равновесия между внешними силами, действующими на тело, и внут­ренними силами между частицами этого тела. Навье считал, что на лю­бое сечение при деформации действует система молекулярных сил, каж­дая из которых действует на бесконечно малую площадку. Для того что­бы элемент работал нормально, эта система сил должна находиться в равновесии.

Теорию упругости Навье развил французский ученый Огюстен Луи Коши (1789 - 1857). Если Навье выводил свои уравнения равновесия из представлений о молекулярной структуре и силах межатомного взаимо­действия, то Коши использовал более очевидное представление о дав­лении воды на плоскость. Коши принадлежит гипотеза о том, что дав­ление на любую поверхность твердого тела не обязательно должно быть перпендикулярным. А затем он уже выводит те уравнения, с которых в современных высших учебных заведениях во всем мире начинается изучение теории упругости.

Коши изучает маленький кусочек вещества, вырезанный из любого участка твердого тала, например, изгибаемой балки. Поскольку вырезанный кусочек в теле был связан со всех сторон силами, то при обры­ве этих связей он должен изменить форму и размеры. Чтобы этого не произошло, т.е. чтобы сохранилось равновесие, мы должны ко всем гра­ням этого тела приложить такие силы, которые бы в точности восстано­вили его прежнюю форму в теле так, как будто разрезов и не было. При­ведя в порядок силы на гранях элементарного объема, т.е. разлагая их на нормальные, перпендикулярные, и сдвигающие, действующие в плоскос­ти грани, можно получить уравнения, связывающие напряжения на разных гранях друг с другом. Изучая напряженное состояние элементарного ку­сочка балки математическими методами, Коши открыл законы, по которым сила передается с одних граней на другие. Это очень важный момент в познании законов, по которым можно определить сжатые и растянутые, перегруженные и ненагруженные места в элементе. Для описания поведе­ния тела Коши вводит много новых терминов, отражающих определенные явления. Им устанавливается точное число разного вида напряжений, которое необходимо для полной характеристики механического состояния любой напряженной внутри тела плоской поверхности. Коши показывает, что в теле всегда можно выделить такие площади, в которых будут действовать только нормальные, т.е. перпендикулярные к сечению силы – он их назвал главными напряжениями, а их направления – главными на­правлениями. Соответственно деформации, которые вызваны главными напряжениями, названы им главными деформациями. В конечном счете Коши выводит полную систему из трех уравнений для решения задач теории упругости.

Немногим позже уравнениями равновесия занялся современник Навье и Коши, их соотечественник Пуассон (1781 - 1840). Он доказал, что эти три уравнения не только необходимы, но и достаточны для того, чтобы рассчитывать напряженное состояние твердого тела. Симеон Дени Пуассон главным образом занимался физикой и решил много сложнейших задач. В механике же, кроме уравнений равновесия, колебаний и прогиба стер­жней, изгиба круглых пластинок и других задач, Пуассон оставил память о себе тем, что ввел коэффициент, получивший его имя. Еще Юнг отметил, что при сжатии стержня поперечное сечение элемента увеличи­вается, а при растяжении – уменьшается. Так вот, отношение упругого уменьшения или увеличения поперечного размера элемента к его продоль­ному удлинению или укорочению является величиной, постоянной для каж­дого материала. Пуассон исходил из того, что объем элемента до прило­жения нагрузки и после этого не изменяется. Изменяется лишь форма. В частности, при сжатии стержня увеличивается его площадь сечения и уменьшается высота. При растяжении, наоборот, уменьшается площадь сечения и увеличивается высота. При таком подходе влияние материала не учитывалось, считалось, что он не играет роли. Поэтому коэффициент Пуассона был величиной постоянной для любого материала, равной 0,25. В дальнейшем величина и универсальность коэффициента Пуассо­на подверглись сомнению. Английский исследователь Джордж Грин, решая уравнения теории упругости из условия сохранения энергии, теоретически приходит к тому, что коэффициент Пуассона не может быть посто­янной величиной для всех материалов. Опыты показали, что коэффициент Пуассона, как и модуль Юнга, отражает особенности атомных взаимодействий. Объем деформированного тела, как оказалось, может изменяться за счет перераспределения атомных связей в пространственной структу­ре вещества. Поэтому для некоторых материалов коэффициент Пуассона может быть даже близок к нулю. Например, для металла бериллия изме­рения дают величину 0,03, для алмаза – 0,07. Значит, эти материалы, растягиваясь в длину, почти не сокращают межатомных расстояний в поперечном направлении, настолько эти связи жестки при сближении. Теперь существует таблица значений коэффициента Пуассона для различ­ных материалов. Важная константа Пуассона вошла во все уравнения теории упругости, и без нее не обходится ни один инженерный расчет.

После исследований Навье, Коши и Пуассона главные уравнения теории упругости стали классическими, чуть ли не идеальными. Однако незыблемость принятых теорий прочности во второй половине XIX в. значительно пошатнулась. И связано это было опять-таки с развитием техники, которая задавала науке все более сложные задачи. Накопив довольно обширный материал по растяжению и сжатию, теория упругости еще плохо справлялась с таким видом деформации, как кручение. В этой области значительные результаты получил французский ученый Адемар Жан Клод Барре Сен-Венан (1797-1886), которому было суждено оставить заметный след в истории теории упругости. Сен-Венаном написано огромное число работ в самых различных областях механики твердого тела. Ему, кстати, принадлежит оригинальный способ публикации своих идей. Так, он издает курс лекций глубоко почитаемого им Навье со своими примечаниями в виде книги (в 1864 г.), в которой 1/10 места была за­нята лекциями, а 9/10 – примечаниями к ней. Но наибольшую извест­ность получили два его мемуара (о кручении и об изгибе призм), не ут­ратившие своего значения до наших дней. В советском издании 1961 г. они заняли объем в 500 страниц! Сен-Венан разрабатывает теорию плас­тичности для двумерных задач. Им найдена весьма важная область рас­пространения напряжений – зона действия внешних сил, и открыт прин­цип, получивший его имя.


  1   2   3   4

Похожие:

Прикладная математика iconРабочая программа дисциплины алгебра и аналитическая геометрия Рекомендовано Методическим советом угту-упи для направления 230400 «Прикладная математика»
Программа составлена в соответствии с Государственным образовательным стандартом высшего профессионального образования по направлению...
Прикладная математика iconМетоды оптимизации
...
Прикладная математика iconПрограмма дисциплины: Моделирование Бизнес-процессов  для направления 010500. 62 «Прикладная математика и информатика»
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления подготовки 010500....
Прикладная математика iconРабочая программа дисциплины "математическое моделирование" Для
Для подготовки дипломированных специалистов по направлению 657100–”Прикладная математика по специальности 073000–“Прикладная математика...
Прикладная математика iconАннотация рабочей программы «Методы оптимизации»
«прикладная математика и информатика». Дисциплина реализуется на Инженерно-экономическом факультете Самарского Государственного Технического...
Прикладная математика iconАннотация рабочей программы
Б4 по направлению подготовки бакалавров 010400 "Прикладная математика и информатика". Дисциплина реализуется на инженерно-экономическом...
Прикладная математика iconРуководство курсовыми, выпускными и дипломными работами студентов специальности «Прикладная математика и информатика»
В 1996 году закончила Математический факультет Якутского государственного университета по специальности «Прикладная математика»,...
Прикладная математика iconАннотация рабочей программы «Теория игр и исследование операций»
В. од. 1 учебного плана бакалавров по направлению специальности 010400 «Прикладная математика и информатика». Дисциплина реализуется...
Прикладная математика iconБазы знаний и экспертные системы для подготовки
Для подготовки дипломированных специалистов по направлению 657100 –“ прикладная математика ” по специальности 073000 -“ Прикладная...
Прикладная математика iconОбъектно ориентированное программирование для подготовки
...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница