Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика»




НазваниеКнига предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика»
страница5/12
Дата02.03.2013
Размер1.54 Mb.
ТипКнига
1   2   3   4   5   6   7   8   9   ...   12

2.1. История развития средств вычислительной техники


Вычислительная система, компьютер

Изыскание средств и методов механизации и автоматизации работ — одна из основ­ных задач технических дисциплин. Автоматизация работ с данными имеет свои особенности и отличия от автоматизации других типов работ. Для этого класса задач используют особые виды устройств, большинство из которых являются элек­тронными приборами. Совокупность устройств, предназначенных для автомати­ческой или автоматизированной обработки данных, называют вычислительной тех­никой. Конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка, называют вычисли­тельной системой. Центральным устройством большинства вычислительных сис­тем является компьютер.

Компьютер это электронной прибор, предназначенный для автоматизации созда­ния, хранения, обработки и транспортировки данных.

Принцип действия компьютера

В определении компьютера как прибора мы указали определяющий признак — электронный. Однако автоматические вычисления не всегда производились элек­тронными устройствами. Известны и механические устройства, способные выпол­нять расчеты автоматически.

Анализируя раннюю историю вычислительной техники, некоторые зарубежные исследователи нередко в качестве древнего предшественника компьютера называют механическое счетное устройство абак. Подход «от абака» свидетельствует о глубо­ком методическом заблуждении, поскольку абак не обладает свойством автомати­ческого выполнения вычислений, а для компьютера оно определяющее.

  • Абак — наиболее раннее счетное механическое устройство, первоначально представ­лявшее собой глиняную пластину с желобами, в которых раскладывались камни, пред­ставляющие числа. Появление абака относят к четвертому тысячелетию до н. э. Местом появления считается Азия. В средние века в Европе абак сменился разграфленными таблицами. Вычисления с их помощью называли счетом на линиях, а в России в XVI-XVII веках появилось намного более передовое изобретение, применяемое и поныне, — русские счеты.

В то же время, нам хорошо знаком другой прибор, способный автоматически выпол­нять вычисления, — это часы. Независимо от принципа действия, все виды часов (песочные, водяные, механические, электрические, электронные и др.) обладают способностью генерировать через равные промежутки времени перемещения или сигналы и регистрировать возникающие при этом изменения, то есть выполнять автоматическое суммирование сигналов или перемещений. Этот принцип просле­живается даже в солнечных часах, содержащих только устройство регистрации (роль генератора выполняет система Земля — Солнце).

  • Механические часы — прибор, состоящий из устройства, автоматически выполняющего перемещения через равные заданные интервалы времени и устройства регистрации этих перемещений. Место появления первых механических часов неизвестно. Наиболее ранние образцы относятся к XIV веку и принадлежат монастырям (башенные часы).

В основе любого современного компьютера, как и в электронных часах, лежит так­товый генератор, вырабатывающий через равные интервалы времени электриче­ские сигналы, которые используются для приведения в действие всех устройств компьютерной системы. Управление компьютером фактически сводится к управле­нию распределением сигналов между устройствами. Такое управление может производиться автоматически (в этом случае говорят о программном управлении) или вручную с помощью внешних органов управления — кнопок, переключателей, пере­мычек и т. п. (в ранних моделях). В современных компьютерах внешнее управле­ние в значительной степени автоматизировано с помощью специальных аппаратно-логических интерфейсов, к которым подключаются устройства управления и ввода данных (клавиатура, мышь, джойстик и другие). В отличие от программного управ­ления такое управление называют интерактивным.

Механические первоисточники

Первое в мире автоматическое устройство для выполнения операции сложения было создано на базе механических часов. В 1623 году его разработал Вильгельм Шикард, профессор кафедры восточных языков в университете Тюбингена (Германия). В наши дни рабочая модель устройства была воспроиз­ведена по чертежам и подтвердила свою работо­способность. Сам изобретатель в письмах называл машину «суммирующими часами».

В 1642 году французский механик Блез Паскаль (1623-1662) разработал более компактное сумми­рующее устройство (рис. 2.1), которое стало пер­вым в мире механическим калькулятором, выпускавшимся серийно (главным образом для нужд парижских ростовщиков и менял). В 1673 году немецкий математик и философ Г. В. Лейбниц (1646-1717) создал меха­нический калькулятор, который мог выполнять операции умножения и деления путем многократного повторения операций сложения и вычитания.

На протяжении XVIII века, известного как эпоха Просвещения, появились новые, более совершенные модели, но принцип механического управления вычислитель­ными операциями оставался тем же. Идея программирования вычислительных опе­раций пришла из той же часовой промышленности. Старинные монастырские ба­шенные часы были настроены так, чтобы в заданное время включать механизм, связанный с системой колоколов. Такое программирование было жестким — одна и та же операция выполнялась в одно и то же время.

Идея гибкого программирования механических устройств с помощью перфорированной бумажной ленты впервые была реализована в 1804 году в ткацком станке Жаккарда, после чего оставался только один шаг до программного управления вычислитель­ными операциями.

Этот шаг был сделан выдающимся английским матема­тиком и изобретателем Чарльзом Бэббиджем (1792-1871) в его Аналитической машине, которая, к сожалению, так и не была до конца построена изобретателем при жизни, но была воспроизведена в наши дни по его чертежам, так что сегодня мы вправе говорить об Аналитической машине, как о реально существующем устройстве. Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные. Аналитическая машина содержала два крупных узла — «склад» и «мельницу». Данные вводились в меха­ническую память «склада» путем установки блоков шесте­рен, а потом обрабатывались в «мельнице» с использова­нием команд, которые вводились с перфорированных карт (как в ткацком станке Жаккарда).

  • Исследователи творчества Чарльза Бэббиджа непременно отмечают особую роль в разработке проекта Аналитической машины графини Огасты Ады Лавлейс (1815-1852), дочери известного поэта лорда Байрона. Именно ей принадлежала идея использова­ния перфорированных карт для программирования вычислительных операций (1843). В частности, в одном из писем она писала: «Аналитическая машина точно так же плетет алгебраические узоры, как ткацкий станок воспроизводит цветы и листья». Леди Аду можно с полным основанием назвать самым первым в мире программистом. Сегодня ее именем назван один из известных языков программирования.

Идея Чарльза Бэббиджа о раздельном рассмотрении команд и данных оказалась необычайно плодотворной. В XX в. она была развита в принципах Джона фон Ней­мана (1941 г.), и сегодня в вычислительной технике принцип раздельного рассмотрения программ и данных имеет очень важное значение. Он учитывается и при разработке архитектур современных компьютеров, и при разработке компью­терных программ.


Математические первоисточники

Если мы задумаемся над тем, с какими объектами работали первые механические предшественники современного электронного компьютера, то должны признать, что числа представлялись либо в виде линейных перемещений цепных и реечных механизмов, либо в виде угловых перемещений зубчатых и рычажных механизмов. И в том и в другом случае это были перемещения, что не могло не сказываться на габаритах устройств и на скорости их работы. Только переход от регистрации пере­мещений к регистрации сигналов позволил значительно снизить габариты и повы­сить быстродействие. Однако на пути к этому достижению потребовалось ввести еще несколько важных принципов и понятий.

Двоичная система Лейбница. В механических устройствах зубчатые колеса могут иметь достаточно много фиксированных и, главное, различимых между собой поло­жений. Количество таких положений, по крайней мере, равно числу зубьев шесте­рни. В электрических и электронных устройствах речь идет не о регистрации поло­жений элементов конструкции, а о регистрации состояний элементов устройства. Таких устойчивых и различимых состояний всего два: включен - выключен; открыт — закрыт; заряжен — разряжен и т. п. Поэтому традиционная десятичная система, использованная в механических калькуляторах, неудобна для электронных вычис­лительных устройств.

Возможность представления любых чисел (да и не только чисел) двоичными цифрами впер­вые была предложена Готфридом Вильгельмом Лейбницем в 1666 году Он пришел к двоич­ной системе счисления, занимаясь исследова­ниями философской концепции единства и борьбы противоположностей. Попытка пред­ставить мироздание в виде непрерывного вза­имодействия двух начал («черного» и «белого», мужского и женского, добра и зла) и приме­нить к его изучению методы «чистой» матема­тики подтолкнули Лейбница к изучению свойств двоичного представления данных с помощью нулей и единиц. Надо сказать, что Лейбницу уже тогда приходила в голову мысль о возможности использования дво­ичной системы в вычислительном устройстве, но, поскольку для механических устройств в этом не было никакой необходимости, он не стал использовать в своем калькуляторе (1673 году) принципы двоичной системы.

Математическая логика Джорджа Буля. Говоря о творчестве Джорджа Буля, иссле­дователи истории вычислительной техники непременно подчеркивают, что этот выдающийся английский ученый первой половины XIX века был самоучкой. Воз­можно, именно благодаря отсутствию «классического» (в понимании того времени) образования Джордж Буль внес в логику как в науку революционные изменения. Занимаясь исследованием законов мышления, он применил в логике систему фор­мальных обозначений и правил, близкую к математической. Впоследствии эту систему назвали логической алгеброй или булевой алге­брой. Правила этой системы применимы к самым разнообразным объектам и их группам (множе­ствам, по терминологии автора). Основное назна­чение системы, по замыслу Дж. Буля, состояло в том, чтобы кодировать логические высказывания и сводить структуры логических умозаключений к простым выражениям, близким по форме к мате­матическим формулам. Результатом формального расчета логического выражения является одно из двух логических значений: истина или ложь.

Значение логической алгебры долгое время игнори­ровалось, поскольку ее приемы и методы не содер­жали практической пользы для науки и техники того времени. Однако, когда появилась принципиальная возможность создания средств вычислительной техники на электронной базе, операции, введенные Булем, оказались весьма полезны. Они изначально ориентированы на работу только с двумя сущностями: истина и ложь. Нетрудно понять, как они пригодились для работы с двоичным кодом, который в современных компьютерах тоже представляется всего двумя сигналами: ноль и единица.

Не вся система Джорджа Буля (как и не все предложенные им логические опера­ции) были использованы при создании электронных вычислительных машин, но четыре основные операции: И (пересечение), ИЛИ (объединение), НЕ (обращение) и ИСКЛЮЧАЮЩЕЕ ИЛИ — лежат в основе работы всех видов процессоров совре­менных компьютеров.




2.2. Методы классификации компьютеров

Существует достаточно много систем классификации компьютеров. Мы рассмотрим лишь некоторые из них, сосредоточившись на тех, о которых наиболее часто упо­минают в доступной технической литературе и средствах массовой информации.

Классификация по назначению

Классификация по назначению — один из наиболее ранних методов классифика­ции. Он связан с тем, как компьютер применяется. По этому принципу различают большие ЭВМ (электронно-вычислительные машины), мини-ЭВМ, микро-ЭВМ и персональные компьютеры, которые, в свою очередь, подразделяют на массовые, деловые, портативные, развлекательные к рабочие станции.

Большие ЭВМ. Это самые мощные компьютеры. Их применяют для обслуживания очень крупных организаций и даже целых отраслей народного хозяйства. За рубе­жом компьютеры этого класса называют мэйнфреймами (mainframe). В России за ними закрепился термин большие ЭВМ. Штат обслуживания большой ЭВМ дости­гает многих десятков человек. На базе таких суперкомпьютеров создают вычисли­тельные центры, включающие в себя несколько отделов или групп.



Центральный процессор - основной блок ЭВМ, в котором непосредственно и про­исходит обработка данных и вычисление результатов. Обычно центральный про­цессор представляет собой несколько стоек аппаратуры и размещается в отдель­ном помещении, в котором соблюдаются повышенные требования по температуре, влажности, защищенности от электромагнитных помех, пыли и дыма. Группа системного программирования занимается разработкой, отладкой и внедре­нием программного обеспечения, необходимого для функционирования самой вычислительной системы. Работников этой группы называют системными програм­мистами. Они должны хорошо знать техническое устройство всех компонентов ЭВМ, поскольку их программы предназначены в первую очередь для управления физиче­скими устройствами. Системные программы обеспечивают взаимодействие программ более высокого уровня с оборудованием, то есть группа системного программиро­вания обеспечивает программно-аппаратный интерфейс вычислительной системы.

Группа прикладного программирования занимается созданием программ для выпол­нения конкретных операций с данными. Работников этой группы называют приклад­ными программистами. В отличие от системных программистов им не надо знать техническое устройство компонентов ЭВМ, поскольку их программы работают не с устройствами, а с программами, подготовленными системными программистами. С другой стороны, с их программами работают пользователи, то есть конкретные исполнители работ. Поэтому можно говорить о том, что группа прикладного програм­мирования обеспечивает пользовательский интерфейс вычислительной системы.

Группа подготовки данных занимается подготовкой данных, с которыми будут работать программы, созданные прикладными программистами. Во многих случаях сотруд­ники этой группы сами вводят данные с помощью клавиатуры, но они могут выполнять и преобразование готовых данных из одного вида в другой. Например, они могут получать иллюстрации, нарисованные художниками на бумаге, и преобразовывать их в электронный вид с помощью специальных устройств, называемых сканерами.

Группа технического обеспечения занимается техническим обслуживанием всей вычислительной системы, ремонтом и наладкой устройств, а также подключением новых устройств, необходимых для работы прочих подразделений.

Группа информационного обеспечения обеспечивает технической информацией все прочие подразделения вычислительного центра по их заказу. Эта же группа создает и хранит архивы ранее разработанных программ и накопленных данных. Такие архивы называют библиотеками программ или банками данных.

Отдел выдачи данных получает данные от центрального процессора и преобразует их в форму, удобную для заказчика. Здесь информация распечатывается на печата­ющих устройствах (принтерах) или отображается на экранах дисплеев.

Большие ЭВМ отличаются высокой стоимостью оборудования и обслуживания, поэтому работа таких суперкомпьютеров организована по непрерывному циклу. Наиболее трудоемкие и продолжительные вычисления планируют на ночные часы, когда количество обслуживающего персонала минимально. В дневное время ЭВМ исполняет менее трудоемкие, но более многочисленные задачи. При этом для повы­шения эффективности компьютер работает одновременно с несколькими задачами и, соответственно, с несколькими пользователями. Он поочередно переключается с одной задачи на другую и делает это настолько быстро и часто, что у каждого пользователя создается впечатление, будто компьютер работает только с ним. Такое распределение ресурсов вычислительной системы носит название принципа раз­деления времени.

1   2   3   4   5   6   7   8   9   ...   12

Похожие:

Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика» iconУчебник для вузов Под редакцией С. В. Симоновича
Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика», для преподавательского...
Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика» iconКнига также может быть полезна практикующим инженерам, осваивающим современные компьютерные технологии, преподавателям вузов и средних специальных учебных заведений
Учебник предназначен для студентов и бакалавров, магистров и аспирантов технических вузов, изучающих информационные технологии в...
Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика» iconНовый комплексный учебник по сапр
Учебник предназначен для студентов и бакалавров, магистров и аспирантов технических вузов, изучающих информационные технологии в...
Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика» iconПрограмма дисциплины «Информационные технологии в рекламе» для направления 031600. 61 «Реклама и связи с общественностью»
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов для специальности 032401....
Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика» iconАннотация дисциплины «Мировые информационные ресурсы и сети» Общая трудоемкость изучения дисциплины составляет
Дисциплина «Мировые информационные ресурсы и сети» предназначена для студентов третьего курса, обучающихся по направлению 220400...
Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика» iconАннотация дисциплины «Мировые информационные ресурсы и сети» Общая трудоемкость изучения дисциплины составляет
Дисциплина «Мировые информационные ресурсы и сети» предназначена для студентов третьего курса, обучающихся по направлению 220400...
Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика» iconПрограмма дисциплины «Информационные технологии в рекламе»  для специальности 032401. 65 «Реклама»
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов для специальности 032401....
Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика» iconИ. В. Челышева методика и технология
Книга предназначена для студентов вузов, аспирантов, преподавателей высшей школы, учителей, исследователей в области педагогики и...
Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика» iconПрограмма дисциплины Распределенные информационные системы для направления 080500. 62 «Бизнес-информатика»
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления подготовки 080500....
Книга предназначена для студентов технических вузов, изучающих информационные технологии в рамках дисциплины «Информатика» iconПрограмма дисциплины «Проектирование информационных систем» для специальности 230201. 65 «Информационные системы и технологии»
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов специальности 230201. 65 «Информационные...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница