Высшая математика III основы теории вероятностей. Элементы математической статистики




НазваниеВысшая математика III основы теории вероятностей. Элементы математической статистики
страница3/9
Дата20.04.2013
Размер1.61 Mb.
ТипПрограмма курса
1   2   3   4   5   6   7   8   9

СЛУЧАЙНЫЕ СОБЫТИЯ


    1. ИСПЫТАНИЯ И СОБЫТИЯ


Случайным событием (или просто событием) называется любой факт, который может иметь место при наличии определенной совокупности условий.

Каждое осуществление требуемой совокупности условий называется испытанием или опытом.

События, которые могут произойти в результате испытания, называются исходами данного испытания. События принято обозначать заглавными (прописными) буквами начала латинского алфавита: А, В, С и т.д. Словесное описание события часто дается в такой форме:

А = {выпадение "орла" при бросании монеты}.


    1. ВИДЫ СОБЫТИЙ


В теории вероятностей различают виды событий.

Достоверное событие. Так называют событие, которое обязательно происходит в результате испытания.

Невозможное событие событие, которое не может произойти в данном испытании.

Совместные и несовместные события. Два события называются несовместными, если они не могут произойти вместе в одном испытании, в противном случае их называют совместными. События А1, А2, ..., Аn , называют попарно несовместными, если никакие два из них не могут произойти вместе в одном испытании.

Противоположным событию А называется событие А, состоящее в непоявлении события А. Очевидно, что события А и А являются несовместными.

Говорят, что события А1, А2 ,...,Аn в некотором испытании образуют полную группу, если в результате испытания обязательно должно произойти хотя бы одно из них.

Условимся полную группу несовместных исходов называть пространством элементарных событий.


Пример 2.1. Достоверным является событие А = {извлечение белого шара из урны, где все шары белые}.

Невозможным является событие B = {извлечение белого шара из урны, где все шары черные}.

Практически невозможное событие: C1={найти иголку в стоге сена}; C2=={вытащить белый шар из урны, где 1000 шаров черные, а 1 – белый}

Практически достоверное событие: D={вытащить белый шар из урны, где 999 шаров белые, а 1 – черный};


Пример 2.2. Испытание состоит в бросании игральной кости. Рассматриваем события:

А = {выпадение двух очков};

В = {выпадение трех очков};

С = {выпадение четного числа очков}.

События А и В, а также В и С являются несовместными. События А и С – совместные. Попарно несовместными события А, В, С не являются.


Пример 2.3. Производится бросание игральной кости.

А = {выпадение шести очков};

А = {выпадение любого числа очков, кроме шести}.

Говорят, что события А1, А2 ,...,Аn в некотором испытании образуют полную группу, если в результате испытания обязательно должно произойти хотя бы одно из них.


Пример 2.4. Производится бросание монеты. Полную группу образуют события А = {выпадение "орла"}, В = {выпадение "решки"}.


    1. КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ


Исходы испытания называют равновозможными, если нет объективных причин считать, что какие–либо из них могут происходить чаще, чем другие.

Событие В называется благоприятствующим событию А, если появление события В означает одновременно появление события А.


Пример 2.5. Событие В={выпадение двух очков на игральной кости} благоприятствует событию А={выпадение четного числа очков}.


Определение (классическое). Вероятностью события А в данном опыте называется отношение числа т исходов опыта, благоприятствующих событию А, к общему числу п исходов опыта, образующих полную группу попарно несовместных равновозможных событий:



Пример 2.6. Опыт – бросание игральной кости. Событие –А={выпадение четного числа очков}. Исходы опыта – выпадение того или иного числа очков. Очевидно, что шесть возможных исходов опыта образуют полную группу попарно несовместных равновозможных событий (n=6) Благоприятствуют событию А три исхода: выпадение 2–х, 3–х и 6–и очков (m=3). Следовательно, Р(А)= m/n =3/6= 1/2.


Из классического определения вероятности следует, что 0Р(А)1, причем вероятность невозможного события равна нулю (практически невозможного события близка к нулю), а вероятность достоверного – единице (практически достоверного события близка к единице).


    1. ОСНОВНЫЕ ФОРМУЛЫ КОМБИНАТОРИКИ


Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения элементов конечного множества в соответствии с заданными правилами. В теории вероятностей формулы комбинаторики широко используются для подсчета числа исходов опыта.

Основной принцип комбинаторики. Пусть требуется выполнить одно за другим k действий, причем первое действие можно выполнить п1, способами, второе – п2 способами и т.д., тогда все k действий можно выполнить следующим числом способов:

п = п1п2..пk.

Все приводимые ниже формулы комбинаторики выводятся как следствия из этого основного правила.

Сочетания. Пусть  – множество из п элементов. Произвольное (неупорядоченное) тэлементное подмножество множества из п элементов называется сочетанием из п элементов по т. Сочетаниями из трёх элементов по два являются следующие неупорядоченные подмножества множества {а, b, c}: {a,b},{a,c},{b,c}.

Число сочетаний из п элементов по т



Определение 2.1. Множество называется упорядоченным, если каждому элементу этого множества поставлено в соответствие некоторое число (номер элемента) от 1 до п (п – число элементов множества) так, что различным элементам соответствуют различные числа.

Перестановки. Различные упорядоченные множества, которые отличаются лишь порядком элементов (т. е. могут быть получены из того же самого множества), называются перестановками этого множества. Например, перестановками множества {а, b, с} являются упорядоченные множества (а, b, с), (а, с, b), (b, а, с), (b, с, а), (с, а, b), (с, b, а).

Число перестановок из п элементов

Рп =12... (n–1) n = n!

Размещения. Упорядоченное m–элементное подмножество множества из п элементов называется размещением из п элементов по т. Например, размещениями из трёх элементов по два являются следующие упорядоченные подмножества множества (а, b, с): (а, b), (b, а), (а, с), (с, а), (b, с), (с, b).

Число размещений из п элементов по т



Пример 2.7. Набирая номер телефона, абонент забыл последние две цифры и, помня, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набран правильный номер.

Решение. Воспользуемся классическим определением вероятности. Общее число исходов испытания (выбор в определенном порядке двух цифр из десяти) равно числу вариантов извлечения двух элементов из десяти с учетом порядка следования их, т.е. числу размещений из десяти элементов по два:



Благоприятный исход испытания только один, т=1. Следовательно, искомая вероятность равна p=1|90.

Пример 2.8. В партии из десяти деталей 7 стандартных. Найти вероятность того, что среди 6 взятых наудачу изделий 4 стандартных.

Решение. Общее число исходов испытания равно числу вариантов извлечения шести деталей из десяти без учета порядка извлечения, т.е. равно числу сочетаний из десяти элементов по шесть:



Число благоприятных исходов согласно основному правилу комбинаторики равно произведению числа вариантов извлечения четырех деталей из семи стандартных на число вариантов извлечения двух деталей из трех нестандартных:



Искомая вероятность равна р= 105/210= 1/2.


    1. ПРОИЗВЕДЕНИЕ И СУММА СОБЫТИЙ


Произведением двух событий А я В называется событие АВ, состоящее в том, что происходит каждое из этих событий.

Произведением нескольких событий называется событие, состоящее в появлении всех этих событий.

Суммой двух событий А и В называется событие А+В, состоящее в том, что происходит хотя бы одно из этих событий.

Суммой нескольких событий называется событие, состоящее в появлении хотя бы одного из этих событий.


Пример 2.9. Из урны, содержащей не менее двух белых и двух черных шаров, последовательно извлекаются два шара.

А = {белый шар при первом извлечении};

В = {белый шар при втором извлечении};

АВ = {белые шары при первом и втором извлечениях};

А+В = {первый шар – белый, второй – черный, или первый шар – черный, второй – белый, или первый и второй шары – белые}.


    1. УСЛОВНАЯ ВЕРОЯТНОСТЬ. ВЕРОЯТНОСТЬ ПРОИЗВЕДЕНИЯ СОБЫТИЙ


Определение 2.2. Вероятность события А, вычисленная при условии, что произошло событие В, называется условной вероятностью события А при наличии события В и обозначается Р(А|В).


Пример 2.10. Опыт: подбрасывание двух монет. События:

А = {выпадение «орла» на обеих монетах};

В = {выпадение «орла» на одной из монет}.

Найти вероятность Р(А). Общее число возможных исходов опыта n=4 (оо, ор, рр, ро), благоприятствующий исход один (оо), следовательно, Р(А)=1/4.

Найти теперь условную вероятность Р(А|В). Поскольку известно, что произошло событие В, число возможных исходов испытания п1 (оо, ор, ро), благоприятствующий исход по–прежнему один, следовательно, Р(А|В)=1/3.

Теорема. Вероятность произведения двух событий А и В, равна произведению вероятности одного из этих событий на условную вероятность другого при наличии первого:

Р(АВ) = Р(А)Р(В|А) или Р(АВ) = Р(В)Р(А|В). (2.1)

Эта теорема обобщается на любое конечное число событий следующим образом:

(2.2)

Определение 2.3. Два события называются независимыми, если появление любого из них не изменяет вероятности другого, т.е. события А и В независимы, если Р(А|В)=Р(А).

Из формул (2.1) следует, что если выполняется равенство Р(А|В)=Р(А),.то выполняется и равенство Р(В\А)=Р(В).

Определение 2.4. Несколько событий, А1, А2, ..., Ап, называются независимыми в совокупности (или просто независимыми), если появление любых из них не изменяет вероятностей остальных. Для независимых событий формула (2.2) принимает вид:

Р(А1 А2 ...Ап) = Р(А1)Р(А2...Р(Ап).

Пример 2.11. Из урны, содержащей 3 белых и 7 черных шаров, наудачу извлекают два шара. Найти вероятность того, что оба шара белые.

Решение. Считаем, что шары извлекаются поочередно. Пусть

А = {первый шар – белый}, В = {второй шар – белый}, тогда АВ {оба шара – белые}.

По теореме умножения вероятностей Р(АВ)=Р(А)Р(В|А). Согласно классическому определению вероятности Р(А)=3/10, Р(В|А)=2/9. Следовательно, Р(АВ)= (3/10)(2/9).

Пример 2.12. Два стрелка стреляют по одной мишени. Вероятность поражения мишени первым стрелком равна 0.6, вторым – 0.8. Найти вероятность того, что в мишени будет две пробоины.

Решение. Введем в рассмотрение события, вероятности которых известны:

А = {поражение мишени первым стрелком},

В {поражение мишени вторым стрелком}.

Интересующее нас событие выразим через эти события. Для того, чтобы имело место событие С={две пробоины в мишени}, надо, чтобы произошли вместе события А и В, т.е. С=АВ.

Естественно считать события А и В независимыми, поэтому

Р(С)=Р(А)Р(В)=0.60.8.


    1. ВЕРОЯТНОСТЬ СУММЫ СОБЫТИЙ


Теорема 2.1. Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий:

Теорема 2.2. Для любого события А вероятность противоположного события А выражается равенством

Р(А) = 1 – Р(А)

Теорема 2.3. Вероятность суммы двух совместных событий равна сумме вероятностей этих событий минус вероятность их совместного появления:

Р(А + В) = Р(А)+ Р(В) Р(АВ).

Теорема сложения обобщается на любое конечное число событий следующим образом:

(2.3)

Если события А1, А2, ..., Ап попарно несовместные, то формула (2.3) принимает вид:



Замечание. При решении задач с использованием формулы (2.3) приходится производить громоздкие вычисления, поэтому часто выгоднее перейти к противоположным событиям, т.е. вместо вероятности суммы событий А1+А2+...+Ап находить вероятность произведения противоположного события . Очевидно, что эти два события противоположны, поэтому

(2.4)

Пример 2.13. В условиях примера 2 предыдущего пункта найти вероятность появления хотя бы одной пробоины.

Решение. Данное событие есть сумма событий А и В, причем эти события совместные, поэтому вероятность интересующего нас события равна Р(А + В) = Р(А) + Р(В) Р(АВ). Ранее было найдено, что Р(АВ)=0.48, следовательно, Р(А + В) = 0.6 + 0.8 – 0.48 = 0.92.

Пример 2.14. Устройство содержит четыре независимо работающих элемента и сохраняет работоспособность, если работает хотя бы один из элементов. Вероятности безотказной работы элементов в течение определенного срока соответственно равны 0.9, 0.8, 0.7 и 0.6. Найти вероятность безотказной работы устройства.

Решение. Пусть события А1 А2, А3 и А4 означают безотказную работу соответственно первого, второго, третьего и четвертого элементов. Событие А={безотказная работа устройства} есть сумма событий: А=А1+А2+А3+А4. События А1 А2, А3 и А4 совместные, поэтому вероятность Р(А) надо вычислять по формуле (2.3). Чтобы упростить вычисления, воспользуемся формулой (2.4):

.

Так как события А1 А2, А3 и А4 независимые, то противоположные события также независимы, поэтому



= (1 – 0.9)(1 – 0.8)(1 – 0.7)(1 – 0.6) = 0.0024; и

Р(А) = 1 – 0.0024 = 0.9976.

Пример 2.15. Производится три независимых выстрела по мишени. Вероятности попадания в мишень при первом, втором и третьем выстрелах соответственно равны 0.2, 0.5, 0.4. Найти вероятность того, что будет ровно два попадания в мишень.

Решение. Событие А={ровно два попадания в мишень} выражается через события А1={попадание при первом выстреле}, А2={попадание при втором выстреле), А3={попадание при третьем выстреле} следующим образом:



Отсюда, учитывая несовместность суммируемых произведений событий и независимость событий А1, А2, А3, находим



Пример 2.16. В двух урнах находятся шары, отличающиеся только цветом: в первой урне 5 белых шаров, 11 черных и 8 красных, во второй 10 белых, 8 черных и 6 красных. Из обеих урн наудачу извлекают по одному шару. Найти вероятность того, что оба шара одного цвета.

Решение. Введем в рассмотрение следующие события:

В1={извлечение белого шара из первой урны},

В2={извлечение белого шара из второй урны},

С1={извлечение черного шара из первой урны},

С2={извлечение черного шара из второй урны},

D1={извлечение красного шара из первой урны},

D2={извлечение красного шара из второй урны}.

Выразим событие А= {извлечение шаров одного цвета} через эти события:

А= В1 В2+ С1 С2+ D1 D2

Следовательно,

Р(А) = Р(В1)Р(В2) + Р(С1)Р(С2) + Р(D1)P(D2).

Вероятности событий В, С, D найдем из классического определения: Р(В1)=5/24, Р(В2)=10/24, Р(С1)=11/24, Р(С2)=8/24, Р(D1)=8/24, P(D2)=6/24.

Таким образом, получаем




    1. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ


Пусть А некоторое событие, которое может появиться совместно с одним из ряда попарно несовместных событий Н1, Н2,…,Нn образующих полную группу (). Будем называть события Н гипотезами.

Теорема 2.4. Вероятность события А, которое может произойти вместе с одной из гипотез Н1, Н2,…,Нn, равна сумме парных произведений вероятностей этих гипотез на соответствующие им условные вероятности события А:



Эта формула называется формулой полной вероятности.

Пример 2.17. Первый станок производит 25%, второй – 35%, третий – 40% всех изделий. Брак в их продукции составляет соответственно 5%, 4% и 2%. Найти вероятность того, что взятое наугад изделие окажется бракованным.

Решение. Введем гипотезы:

Н1={взятое изделие изготовлено на первом станке},

Н2={взятое изделие изготовлено на втором станке},

Н3={взятое изделие изготовлено на третьем станке}.

События Н1, Н2 и Н3 несовместные, образуют полную группу, и событие А ={взятое изделие – брак} происходит вместе с одним из них, следовательно, они действительно могут быть взяты в качестве гипотез для события А. Согласно формуле полной вероятности



По условию задачи

Р(Н1)= 0.25, Р(Н2)=0.35, Р(Н3)=0.40, =0.05,

=0.04, =0.02,

следовательно, Р(А) = 0.25 • 0.05 + 0.35 • 0.04 + 0.40 • 0.02 = 0.0345.

Замечание. Вероятности характеризуют возможность осуществления некоторых условий , а возможность появления А при этих условиях.


    1. ФОРМУЛА БАЙЕСА


Пусть событие А может произойти совместно с одной из гипотез Н1, Н2,…, Нn . Если до проведения опыта были известны вероятности гипотез , а в результате опыта произошло событие А, то условные вероятности гипотез вычисляются по формуле Байеса:



Пример 2.18. Первый станок производит 20%, а второй 80% всех деталей. Брак в их производстве составляет соответственно 4% и 2%. Взятая наугад деталь оказалась бракованной. Найти вероятность того, что эта деталь изготовлена на первом станке.

Решение. Введем две гипотезы для события А={взятая деталь оказалась бракованной}:

Н1={взятая деталь изготовлена на первом станке},

Н2={взятая деталь изготовлена на втором станке}.

Из условия задачи известно: Р(Н1)= 0.2, Р(Н2)=0.8, =0.04, =0.02.. По формуле Байеса находим



Замечание. Формула Байеса указывает путь использования новых экспериментальных данных для коррекции априорных (доопытных) вероятностных представлений об исследуемом объекте.


    1. ПОСЛЕДОВАТЕЛЬНОСТИ ИСПЫТАНИЙ. ФОРМУЛА БЕРНУЛЛИ


Пусть производится ряд испытаний, в каждом из которых с определенной вероятностью р может произойти событие А. Если вероятность события А в каждом испытании не зависит от исходов предыдущих испытаний, то такие испытания называют независимыми относительно события А. Если при этом вероятность события А в каждом испытании одна и та же, то последовательность испытаний называют схемой Бернулли. Вероятность того, что в п испытаниях по схеме Бернулли событие А произойдет т раз в любой последовательности, вычисляется по формуле Бернулли:



где

Значение m = m0 появлений события А в п испытаниях, при котором вероятность принимает наибольшее значение, называется наивероятнейшим числом успехов и определяется из неравенств:

np q m0 np + p.

Разность граничных значений в этом двойном неравенстве равна 1. Если np + p не является целым числом, то наивероятнейшее число одно и равно m0 . Если np + p – целое число, то имеется два наивероятнейших числа m0 : np q и np + p.

Пример 2.19. Вероятность попадания в цель при одном выстреле равна 0.6. Найти вероятность двух попаданий при трех выстрелах.

Решение. Имеем дело с тремя независимыми испытаниями, в каждом из которых с вероятностью p=0.6 может произойти событие А={попадание в цель}. Вероятность двух попаданий (в любой последовательности) при трех выстрелах находим по формуле Бернулли:




Пример 2.20. Испытывается 15 одинаковых изделий. Вероятность того, что изделие выдержит испытание, равна 0.9. Найти наивероятнейшее число изделий, выдержавших испытание.

Решение. По условию имеем: Подставим эти данные в неравенства для m0:

150.9–0.1  m0 <150.9+ 0.9 => 13.4 < m0 < 14.4.

Отсюда следует, что m0=14.


    1. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ В СХЕМЕ БЕРНУЛЛИ


Если число испытаний п велико, то вычисления по формуле Бернулли становятся затруднительными. В то же время большие значения п позволяют заменять эту формулу приближенными асимптотическими формулами. Рассмотрим три такие формулы.

Теорема 2.5. (формула Пуассона) Если так, что , то

(2.5)

Формула (2.5) дает хорошие результаты, если npq<9. Если же npq>9, то для вычисления вероятности можно воспользоваться локальной теоремой Лапласа.


Теорема 2.6. (локальная теорема МуавраЛапласа). Вероятность появления события т раз в п независимых испытаниях при больших значениях п приближенно определяется по формуле

(2.6)

где


Теорема 2.7. (интегральная теорема МуавраЛапласа). Вероятность того, что число появлений события в п независимых испытаниях находится в пределах т1 т т2 и при больших значениях п приближенно определяется по формуле

(2.7)

где



Функция Ф(х) называется функцией Лапласа. Для функций имеются таблицы ее значений. Функция является четной, а функция Ф(х) – нечетной, т.е. ; Ф(– х)= – Ф(х);

Из интегральной теоремы Лапласа можно вывести формулу для вероятности отклонения относительной частоты т/п события в серии испытаний от постоянной вероятности р этого события в одном испытании:

(2.8)

Пример 2.21. Завод отправил на базу 500 изделий. Вероятность повреждения изделия в пути равна 0.002. Найти вероятность того, что в пути будут повреждены три изделия.

Решение. Можно считать, что имеем дело со схемой Бернулли, в которой испытания проводятся 500 раз. Так как число п=500 достаточно велико, а вероятность p=0.002 мала (причем npq=5000.0020.9982<9), то воспользуемся приближенной формулой (2.5), где =np =5000.002=1:




Пример 2.22. Найти вероятность того, что событие происходит 80 раз в 400–х испытаниях, если вероятность этого события в каждом испытании равна 0.2.

Решение. Здесь п=400 достаточно велико, но величина npq также велика (npq=4000.20.8=64>9), поэтому воспользуемся формулой (2.6). Вычисляем



По таблице функции находим (0)=0.3989. Окончательно получаем:



Пример 2.23. Найти вероятность того, что в 400–х испытаниях событие произойдет не более 70–ти раз, если вероятность появления этого события в каждом испытании равна 0.2.

Решение. Воспользуемся интегральной теоремой Лапласа для вычисления вероятности :




Пример 2.24. Определим, сколько надо провести испытаний, чтобы с вероятностью 0.95 относительная частота выпадения «орла» отличалась от вероятности р=0.5 этого события не более чем на 5%.

Решение. Воспользуемся формулой (2.8). В нашем случае р=0.5, q=0.5, =0.5 0.05=0.025. По условию задачи



или Пользуясь таблицей функции Лапласа, по значению функции находим значение аргумента:

т.е.

Отсюда находим, что п=1536.64. Таким образом, надо провести не менее чем 1537 испытаний.

1   2   3   4   5   6   7   8   9

Похожие:

Высшая математика III основы теории вероятностей. Элементы математической статистики iconЭлективный курс «Элементы теории множеств, логики, комбинаторики, математической статистики и теории вероятностей»
Поэтому знание основ теории множеств, логики и теории вероятностей даёт возможность учащимся определиться в профессиональной деятельности,...
Высшая математика III основы теории вероятностей. Элементы математической статистики iconРуководство по решению задач по теории вероятностей и математической статистики : учебное пособие / В. Е. Гмурман. 11-е изд., перераб. М. Высшее образование, 2009. 404 с. (Основы наук)
Высшая математика для студентов экономических, технических, естественно-научных специальностей вузов / И. В. Виленкин, В. М. Гробер....
Высшая математика III основы теории вероятностей. Элементы математической статистики iconСамостоятельная работа 2 часа в неделю
Курс прикладной статистики является логичным продолжением курсов теории вероятностей, теории случайных процессов и математической...
Высшая математика III основы теории вероятностей. Элементы математической статистики iconПрограмма дисциплины «Обучение машин и восстановление зависимостей» для направления 010500. 68 «Прикладная математика и информатика»
«Математический анализ», «Линейная алгебра», «Основы теории вероятностей и математической статистики». Для выполнения самостоятельных...
Высшая математика III основы теории вероятностей. Элементы математической статистики iconМетодические подходы введения в содержание математического образования основной школы элементов комбинаторики, статистики и теории вероятностей о введении элементов комбинаторики, статистики
Российского образования в содержание школьного математического образования внесены изменения: впервые в курс основной и средней школы...
Высшая математика III основы теории вероятностей. Элементы математической статистики iconМетодика изучения темы: «Элементы статистики, комбинаторики и теории вероятностей в школьном курсе математики 7- 9 классов» Из опыта работы учителя математики моу сош №5
Методика изучения темы: «Элементы статистики, комбинаторики и теории вероятностей в школьном курсе математики 7- 9 классов»
Высшая математика III основы теории вероятностей. Элементы математической статистики iconТомский государственный университет факультет прикладной математики и кибернетики утверждаю
Для изучения курса необходимо усвоение студентами теории дифференциальных уравнений, линейной алгебры, теории вероятностей, теории...
Высшая математика III основы теории вероятностей. Элементы математической статистики iconРабочая программа дисциплины (модуля)
Цель освоения учебной дисциплины «Теория вероятностей и математическая статистика» – фундаментальная подготовка в области теории...
Высшая математика III основы теории вероятностей. Элементы математической статистики iconПрограмма дисциплины "Основы теории вероятностей и математической статистики" для направления 080200. 62 Менеджмент Профиль специальных дисциплин «Логистика и управление цепями поставок»
Государственное образовательное бюджетное учреждение высшего профессионального образования
Высшая математика III основы теории вероятностей. Элементы математической статистики iconПлан работы гоу цо «Школа здоровья» №2000 на октябрь 2007 г
Творческая мастерская учителей математики. Теория вероятностей и элементы математической статистики
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница