Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода




Скачать 348.15 Kb.
НазваниеИсследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода
страница1/5
Дата27.09.2012
Размер348.15 Kb.
ТипИсследование
  1   2   3   4   5
НАНОТЕХНОЛОГИЯ И ВКЛЮЧЕНИЕ АТОМОВ ДЕЙТЕРИЯ 2H, УГЛЕРОДА 13C, АЗОТА 15N, И КИСЛОРОДА 18O В МОЛЕКУЛЫ АМИНОКИСЛОТ И БЕЛКОВ.

 

О. В. МОСИН

 

Московская государственная академия тонкой химической технологии им. М.В. Ломоносова, 117571, г. Москва, проспект Вернадского, д.86

 

 


Данное исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода C13, азота N15 и кислорода O18 в молекулы аминокислот и белков. Рассмотрены потенциальные возможности этих методов для направленного синтеза изотопномеченых молекул аминокислот и белков. Представлены собственные и имеющиеся в литературе данные по получению и использованию синтезированных молекул с включенными стабильными изотопами в разнопрофильных биохимических исследованиях с применением методов спектроскопии ядерного магнитного резонанса (ЯМР), инфракрасной (ИК) и лазерной спектроскопии, а также масс-спектрометрии.


Ключевые слова: стабильные изотопы; микроорганизмы; биосинтез; аминокислоты и белки.


ВВЕДЕНИЕ

 

Метод включения атомов стабильных изотопов (2Н, 13С, 15N, 18О) в молекулы - важное направление в биохимических и структурно-функциональных исследованиях разнообразных природных соединений и, в частности, аминокислот и белков [1-7]. Молекулы этих изотопномеченых биологически активных соединений (БАС), полученные данным методом с различными уровнями изотопного обогащения, от селективно до униформно меченых, являются удобными инструментами для разнопрофильных метаболических и биохимических исследований [8, 9], медицинской диагностики различных заболеваний [10-13], химических синтезов разнообразных изотопномеченых соединений на их основе. Например, изотопномеченные [2H]- и [13C]фенилаланин и [2H]- и [13C]тирозин использованы в синтезах меченых аналогов пептидных гормонов и нейропептидов [14, 15].

 

Тенденции к предпочтительному применению стабильных изотопов по сравнению с их радиоактивными аналогами обусловлены отсутствием радиационной опасности и возможностью определения локализации метки в молекуле методами высокого разрешения: спектроскопией ЯМР [16-19], ИК- [20, 21] и лазерной спектроскопией [22, 23], масс-спектрометрией [24, 25]. Развитие методов детекции стабильных изотопов за последние годы позволило повысить эффективность проведения многочисленных биологических исследований de novo, а также изучать структуру и механизм действия многих клеточных БАС на молекулярном уровне, манипулируя атомами и конфигурациями молекул, что коррелирует со всеми современными нанотехнологическими стандартами.

 

Разработка методов включения атомов стабильных изотопов в молекулы аминокислот и белков, является актуальной задачей для современной биотехнологии и нанотехнологии, поскольку селективное введение атомов в молекулы может приводить к включению лишь одного отдельно выбранного атома по определённой позиции углеродного скелета молекулы. Это весьма перспективно и интересно для нанотехнологии, когда в полученной молекуле фигурирует лишь один или несколько атомов, замещённых на стабильные изотопы по определённым положениям молекулы.

 

Разные методы, используемые для введения стабильных изотопов в молекулы БАС, обычно приводят к получению продуктов, представляющих собой смеси молекул, различающихся количеством атомов, замещённых на стабильные изотопы. Поэтому необходимо разрабатывать и применять новые подходы по получению изотопномеченых БАС, основанные на использовании генно-инженерных методов, комбинации биотехнологических и химико-ферментативных подходов и т. п.

 

В зависимости от цели исследования при реализации того или иного подхода по получению изотопномеченых аминокислот и белков должны учитываться их стоимость, выходы, возможности более полного выделения и очистки, а также изотопная чистота синтезированных молекул.

 

При получении изотопномеченых молекул аминокислот и белков основные затраты связаны с закупкой сырья (субстрата), расходом электроэнергии (на перемешивание, аэрацию и процессы массопереноса) и охлаждением (теплообменом). При использовании природных сырьевых источников (пептонов, белково-витаминных концентратов и т. п.) в качестве субстратов для производства изотопномеченых БАС необходимо также учитывать расход электроэнергии, пара и топлива на предварительную глубокую обработку сырья, чтобы превратить его в поддающиеся микробиологическому воздействию соединения. Сравнительная оценка различных способов производства изотопномеченых аминокислот и белков показывает, что основные расходы связаны со стоимостью сырья, составляющей 70-80% всех затрат.

 

Использование молекул аминокислот и белков, меченных стабильными изотопами, в значительной мере определяется ограниченной доступностью и дороговизной самих высокоочищенных изотопов, выделяемых из различных природных источников. Природная распространенность стабильных изотопов варьирует от 0,015% (относительно общего количества элемента) для дейтерия 2Н , до 1,11% для изотопа углерода 13С, однако, несмотря на низкое содержание изотопов в пробах, разработанные в последние годы высокие методы обогащения и очистки стабильных изотопов позволяют получать молекулы изотопно-меченных субстратов с высокой степени изотопной чистоты.

 

Несмотря на всё возрастающий мировой интерес к молекулам изотопномеченых БАС, в отечественной литературе имеются немногочисленные сведения, касающиеся методов получения этих важных соединений, охарактеризованных нами [26-28]. Целью настоящей статьи является освещение современных методов включения атомов стабильных изотопов в молекулы аминокислот и белков.

 

 

ХИМИЧЕСКИЕ МЕТОДЫ ВКЛЮЧЕНИЯ АТОМОВ СТАБИЛЬНЫХ ИЗОТОПОВ В МОЛЕКУЛЫ

 

Химический синтез

 

Синтетические методы включения атомов стабильных изотопов в молекулы аминокислот представляют собой модифицированный классический синтез аминокислот, в котором стадии карбоксилирования, аминирования, восстановления, гидрирования или гидролиза проводят с использованием меченых реагентов, содержащих стабильные изотопы дейтерия, углерода 13С, азота 15N, кислорода 18O с соответствующим уровнем изотопной чистоты. Так, для синтеза [2Н]-, [15N]- и [18О]аминокислот используют тяжёлую воду 2Н2О , дейтероводород 2H2, дейтерохлористоводородную кислоту 2НCl; LiAl2H4; B22H6 ; 15NH3 ; Na15NH2 ; 15NH2Cl, 18H2O и др. (более подробно о методах получения [2H]-и [15N]аминокислот см. обзоры [29, 30]).

Особую ценность для многих исследований имеют молекулы [13С]аминокислот, которые получают за счёт карбоксилирования соответствующих органических соединений с помощью 13СO2 и Ni(13СCO)4 по связи углерод-водород или углерод-металл с последующим гидролизом.

 

Перспективные синтетические подходы по включению атомов углерода 13С в различные положения молекул, включая карбоксильные СООН- и Сa- положения, продемонстрированы в работах [31-36], а также описан стереоселективный синтез молекул [13С]аминокислот [37-39]. Несмотря на это, химические синтезы многостадийны, требуют больших расходов ценных реагентов и меченых субстратов и приводят в результате к продукту, представляющему собой рацемическую смесь D- и L-форм молекул аминокислот, для разделения которых требуются специальные методы [40].

 

Недостатком химического синтеза является то, что он приводит к синтезу молекул [13С]аминокислот, у которых атомы углерода 13С локализуются по карбоксильным СООН-положениям молекул. Это существенно ограничивает использование данных [13С]аминокислот для биологических исследований вследствие возможной потери изотопной метки углерода 13С за счёт функционирования многочисленных реакций ферментативного декарбоксилирования, происходящих в организме [41]. Разработанные за последние годы синтетические методы введения атома углерода 13С в молекулы аминокислот затрагивают такие положения углеродных атомов в молекулах аминокислот, как метильная группа метионина [42], С2- положение в имидазольном кольце молекулы гистидина [43], а также атомы углерода при карбоксильных СООН- группах аспарагиновой [44], и глутаминовой кислот [45].

 

Более тонкие способы включения атомов стабильных изотопов в молекулы аминокислот связаны с использованием комбинации химических и ферментативных подходов. Так, L-[4-13С]валин, L-[3-13С]триптофан и другие L-[13С]аминокислоты, были синтезированы с использованинем ферментов [46] (более подробно о химико-ферментативных подходах по синтезу изотопномеченых аминокислот см ниже).

 

Изотопный (1Н-2Н)- и (16О-18O)-обмен в молекулах аминокислот и белков.

 

Эффективным подходом для включения атомов дейтерия в молекулы аминокислот является селективное замещение определённых легко обмениваемых на дейтерий ароматических протонов в бензольном кольце молекул фенилаланина и тирозина, в индольном кольце триптофана и в имидазольном кольце гистидина, как в виде индивидуальных молекул аминокислот, так и в составе аминокислотных остатков в белках [47, 48].

 

Реакция изотопного (1Н-2Н)-обмена протекает по механизму электрофильного замещения и затрагивает определённые, наиболее чувствительные к замещению протоны в молекулах ароматических аминокислот. Этим методом могут быть получены в граммовых количествах L-[2,3,4,5,6-2Н]фенилаланин в 85% 2H2SO4 при 500 C, L-[3,5- 2H]тирозин в 6 н. 2H2SO4 при слабом кипячении раствора, L-[2,4,5,6,7-2H]триптофан в 75% [2H]трифторуксусной кислоте при 250 С и L-[2-2H]гистидин в 6 н. NaO2H при 800 С.

 

Вследствие того, что замещаемые на дейтерий протоны в молекулах белков прочно связаны с атомами углерода и трудно обмениваются на дейтерий в мягких условиях, метод несколько лимитируется из-за нестабильности белков в жестких условиях (85-90% НCl/H2SO4, 80-1000 C), необходимых для проведения реакции изотопного обмена [49]. Кроме того, проведение изотопного обмена в более жёстких условиях сопровождается рацемизацией аминокислот. Избежать этого позволяет непосредственное введение полученных за счёт (1Н-2Н)-обмена дейтерированных аналогов аминокислот - L-[2,3,4,5,6-2Н]фенилаланина, L-[3,5-2H]тирозина и L-[2,4,5,6,7-2H]триптофана в молекулы индивидуальных белков, например, в бактериородопсин, синтезируемый бактерией Halobacterium halobium [50].

 

Разработан новый метод включения атомов дейтерия в молекулы аминокислот (глицин, аланин, валин, изолейцин, серин, треонин, пролин, гистидин) реакцией высокотемпературного твёрдофазного каталитического изотопного обмена [51, 52]. В соответствии с этим методом L-аминокислота в протонированой форме реагирует с газообразным дейтерием при 200-2500 С в присутствии высокодисперстного катализатора группы платины (Pt, Pd, Rh), и неорганического носителя (BaSO4, CaCO3, Al2O3).

 

С помощью изотопного обмена можно включать изотоп кислорода-18 в молекулы аминокислот. Для этого используют реакцию изотопного (16О-18О)-обмена по атомам кислорода карбоксильных СООН- групп в молекулах аминокислот в присутствии Н2 18 О в качестве источника метки [53]. Использование этого метода лимитируется высокой стоимостью полученных таким способом [18О]аминокислот. Однако, он полностью оправдывает себя при проведении многочисленных биомедицинских исследований с применением синтезированных молекул [18O]аминокислот, так как они, в отличие от их дейтерированных аналогов, стабильны по отношению к обратному изотопному обмену. Например, [18О]аминокислоты стабильно существовали в плазме крови в течении нескольких дней после инъекции: обратный изотопный (18О-18О)-обмен по карбоксильным положениям в молекуле [18О]тирозина и других молекулах [18O]аминокислот проявлялся лишь при длительной инкубации клеток крови с питательной средой [54].

 

БИОТЕХНОЛОГИЧЕСКИЕ МЕТОДЫ ВКЛЮЧЕНИЯ АТОМОВ СТАБИЛЬНЫХ ИЗОТОПОВ В МОЛЕКУЛЫ АМИНОКИСЛОТ И БЕЛКОВ

 

Выращивание микроорганизмов на средах со стабильными изотопами.

 

Для многих целей, и прежде всего для структурных исследований белков, биотехнология предлагает альтернативный химическому способу включения атомов стабильных изотопов в молекулы аминокислот и белков, который приводит к высоким выходам синтезируемых продуктов, к эффективному включению атомов изотопов в молекулы соединений, и, самое главное, к сохранению природной конфигурации (стереоселективности) конечных продуктов [55, 56]. Метод заключается в выращивании штаммов-продуцентов необходимых БАС на ростовых средах, содержащих различные субстраты, представляющие собой органические соединения и неорганические соли, содержащие стабильные изотопы дейтерия Н, углерода 13С, азота 15N и кислорода 18 О [57-61].

 

Решающее значение для биотехнологического введения атомов стабильных изотопов в молекулы аминокислот и белков имеет правильный выбор микроорганизмов, способных к устойчивому росту на средах, содержащих стабильные изотопы и к продукции нужных БАС. Наиболее доступными объектами для получения многих изотопномеченых белков признаны микроводоросли, большое разнообразие которых в природе позволяет выбирать среди них отдельные виды, способные к эндогенному накоплению белков [62]. В то же время комплексное использование компонентов меченой биомассы микроводорослей позволяет выделять, например, дейтерированные аминокислоты, в том числе и гетеромеченые, из гидролизатов суммарных белков биомассы, выращенной на тяжёловодородной среде [63].

 

Другие традиционные штаммы микроорганизмов также могут эффективно применяться для получения изотопномеченых молекул аминокислот и белков. Основными требованиями к микроорганизмам, используемым для этих целей являются устойчивый рост на средах, содержащих стабильные изотопы и высокий уровень продукции нужных БАС, который можно повысить за счёт применения генно-инженерных методов, а также мутагенеза и селекции. Это создаёт предпосылки для конструирования новых бактериальных штаммов-продуцентов с заданными свойствами и для дальнейшего изучения их характеристик. Биотехнологический подход экономически целесообразен и особенно незаменим, когда необходимы высокая стереоселективность и максимальные уровни изотопного обогащения синтезируемых соединений.

 

При биотехнологическом включении атомов стабильных изотопов в молекулы используют несколько подходов, один из которых заключается в униформном обогащении стабильными изотопами молекул клеточных БАС по всему углеродному скелету молекул. Это достигается за счёт выращивания микроорганизмов на средах, содержащих меченые субстраты высокого уровня изотопной чистоты и с последующим фракционированием компонентов биомассы на различные классы природных соединений [64].

 

Молекулы аминокислот с униформным характером включения атома углерода-13 по скелету молекулы получают, в основном, при выращивании автотрофных микроорганизмов на ростовых средах, содержащих вместо обычных углеродных субстратов исключительно их низкомолекулярные [13С]аналоги, например 13СО2 [65]. Таким способом были получены многие [13C]белки, синтезируемые микроводорослями: ферридоксин из Anabaena [66], цитохром C-553 [67], цитохром C2 из Rhodospirillum [68], и флаводоксин из Anabaena 7120 [69] и использованы для дальнейших ЯМР исследований.

 

Для структурных исследований белков методом спектроскопии ЯМР, для которого необходимо, чтобы как можно больше атомов в молекуле были замещены на их стабильные изотопы, биосинтетические подходы по получению униформно меченых молекул [13C]аминокислот могут обеспечить сравнительно недорогое получение нужного количества меченых [13C]продуктов [70].

 

Включения атома азота 15N в молекулы аминокислот добиваются аналогичным путём за счёт выращивания микроорганизмов на водных средах, содержащих К15NO3 или другие 15N-содержащие соли [71], в то время как высокообогащённые дейтерием аминокислоты можно получать с использованием ростовых сред, содержащих вместо обычной воды 99,9% тяжёлой воды [72].

 

Существует ряд определённых трудностей при использовании тяжёлой воды в качестве источника атомов дейтерия, поскольку необходимо учитывать эффекты, связанные с клеточной адаптацией к ней. Известно, что тяжёлая вода действует токсически на клетки, ингибируя жизненно-важные функции роста и развития многих микроорганизмов.

 

Однако, несмотря на негативный биостатический эффект тяжёлой воды, разные таксономические роды бактерий могут быть достаточно легко адаптированы к росту и биосинтезу на средах содержащих максимальные концентрации тяжелой воды [73], в то время как клетки высших растений способны выдерживать не более 60% тяжёлой воды [74], а животные клетки не более 30% [75].

 

С точки зрения физиологии и генетики адаптация клетки к тяжёлой воде является комплексным феноменом и может привести к изменениям активностей ферментативных реакций, что сказывается косвенно на структуре и функциях молекул синтезируемых БАС, процессах биосинтеза и метаболизма и даже морфологии клетки. В связи с этим, разработка методов физиологической адаптации клетки к тяжёлой воде для получения высокообогащённых дейтерием молекул БАС является весьма актуальной задачей [76-78].

 

При адаптации биологических объектов к тяжёлой воде учитываются химические изотопные эффекты, которые для изотопных пар протий/дейтерий могут быть аномально высокими [79]. Различают первичные и вторичные изотопные эффекты. К первичным изотопным эффектам следует отнести изменение констант скоростей химических реакций, протекающих в тяжёлой воде по отношению к таковым в обычной воде, измеренных как соотношение kh /k2h. Это соотношение меняется для различных связей, образованных с участием дейтерия и может варьировать в пределах от 7 до 10 единиц. К вторичным изотопным эффектам относятся изменения в констатнах скоростей химических реакций, обусловленных действием 2Н2О как растворителя (большая струрированность и вязкость, плотность, коэффициент диффузии и т. п.).

 

Тяжёлая вода является гидроскопическим соединением, активно поглощающем пары влаги из воздуха, неорганических солей среды, при стерилизации и т. п., и, следовательно, этапы, связанные с выращиванием бактерий на тяжёловодородных средах необходимо проводить в герметических условиях с использованием безводных реагентов, предварительно перекристаллизованных в тяжёлой воде неорганических солей и т. п.

 

Атомы изотопа кислорода 18O можно включать в молекулы аминокислот за счёт выращивания микроорганизмов на средах, содержащих другой изотопный аналог воды - Н218O воду. Адаптация клеток к Н218O не является лимитирующим этапом. Однако, Н218O используется в качестве источника изотопной метки в редких случаях, вследствие высокой стоимости изотопных соединений кислорода [80].

 

Селективного включения атомов стабильных изотопов в определённые положения молекул аминокислот и белков достигается за счёт применения комбинации меченых и немеченых субстратов в ростовых средах [81], меченых предшественников аминокислот [82], или при использовании ауксотрофных по определённым аминокислотам штаммов микроорганизмов [83]. Для этих целей очень хорошо подходит такая распространённая бактерия как E. coli, биосинтез аминокислот в которой к настоящему времени изучен наиболее детально и для которой получен многочисленный набор мутантных форм [84].

 

Очень часто, разветвлённые пути метаболизма меченых аминокислот в клетке приводят к специфическому мечению других биосинтетически родственных молекул аминокислот за счёт использования клеткой многочисленных минорных путей биосинтеза и сопряжённых реакций метаболизма. В некоторых случаях этот фактор может существенно облегчить процесс включения атомов стабильных изотопов в молекулы селективно меченых белков и аминокислот. Так был получен [15N]Т4-лизоцим, с селективным характером включения атомов 15N лишь по остаткам глутамата, глутамина и аргинина в молекуле [85]. В работах [86, 87] сообщается о получении других индивидуальных [15N]белков, селективно меченных изотопом 15N по остаткам гистидина и лизина.

 
  1   2   3   4   5

Похожие:

Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода iconИсследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода
Включение атомов дейтерия 2H, углерода 13C, азота 15N, и кислорода 18o в молекулы аминокислот и белков
Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода iconФуллерены, углеродные нанотрубки, графен
Фуллерен является формой углерода. С давних пор известны такие формы углерода – графит, и алмаз. Графит, и алмаз – один и тот же...
Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода iconЧетвертая группа периодической системы
В связи с увеличением объема атомов при переходе от углерода к свинцу процесс принятия электронов ослабевает, а лёгкость их потери...
Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода iconПримерная программа дисциплины
Освоение дисциплины направленно на приобретение знаний о биотехнологических процессов, протекающих при приготовлении хлеба, современных...
Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода iconПолучение алканов,алкенов,алкинов
Предельными углеводородами (алканами) называются соединения, состоящие из атомов углерода и водорода, соединенных между собой только...
Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода iconАнтонова Ирина Игоревна Бундина Ольга Николаевна Свирин Сергей Анатольевич студенты группы тх-1-07
Каждый атом углерода в структуре алмаза расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома (рис. 1)....
Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода iconИсследование золпидема в химико-токсикологическом отношении
Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Пермская государственная фармацевтическая...
Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода iconСеминар Химические основы биохимии. Свойства воды
Особенности элементного состава биомолекул. Значение тетрагональной природы атомов углерода, образуемые им связи
Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода iconСравниваем классы органических соединений в таблице
Ао этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, т к сферическая 1s-ао...
Исследование посвящено развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода iconФизические свойства углекислоты Углекислота (СО2, двуокись углерода, диоксид углерода)
Углекислота (СО2, двуокись углерода, диоксид углерода) – вещество с химическое формулой со2 и молекулярной массой 44,011 г/моль,...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница