Реферат по физике на тему: невесомость работу




НазваниеРеферат по физике на тему: невесомость работу
страница1/2
Дата27.09.2012
Размер0.6 Mb.
ТипРеферат
  1   2


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №4

имени И.С. Черных


РЕФЕРАТ

ПО ФИЗИКЕ НА ТЕМУ:

НЕВЕСОМОСТЬ


Работу выполнила:

Ученица средней школы №4

10 «Б» класса Хлусова Анастасия

Руководитель:

Лебедева Наталья Юрьевна

учитель физики


Томск 2009

Содержание


Введение

3

Глава 1. Вес тела и невесомость

4

1.1. Вес тела

4

1.2. Вес тела, движущегося с ускорением

5

1.3. Невесомость

8

1.4. Это интересно

12

1.4.1. Пламя в невесомости

12

1.4.2. Вибрация жидкости ускоряет ее кипение в невесомости

13

Глава 2. Человек и невесомость

15

2.1. Исследование проблем жизнедеятельности в космосе

17

2.2. Операция в невесомости

18

2.3. Применение космических разработок на Земле

18

Заключение

20

Литература

21

Приложение

22



Введение


Явление невесомости всегда вызывало у меня интерес. Еще бы, каждому человеку хочется летать, а невесомость – это что–то близкое к состоянию полета. До начала исследования мне было известно лишь то, что невесомость – состояние, которое наблюдается в космосе, на космическом корабле, при котором все предметы летают, а космонавты не могут стоять на ногах, как на Земле.

Невесомость является скорее проблемой для космонавтики, чем необычным явлением. Во время полета в космическом корабле могут возникнуть проблемы со здоровьем, а после приземления космонавтов необходимо заново учить ходить, стоять. Таким образом, очень важно знать, что такое невесомость и как она влияет на самочувствие людей, путешествующих в космическом пространстве. Как следствие, необходимо решить эту проблему, создавая программы по уменьшению риска неблагоприятного влияния невесомости на организм.

Цель моей работы – дать понятие невесомости в комплексном виде (т.е. рассмотреть его с разных сторон), отметить актуальность данного понятия не только в рамках изучения космического пространства, отрицательного воздействия на человека, но и в рамках возможности использования на Земле технологии, изобретенных для уменьшения этого воздействия; проведения некоторых технологических процессов, которые трудно или невозможно реализовать в земных условиях.

Задачи этого реферата:

  1. Разобраться в механизме возникновения этого явления;

  2. Описать этот механизм математически и физически;

  3. Рассказать интересные факты про невесомость;

  4. Понять, как состояние невесомости влияет на здоровье людей, находящихся в космическом корабле, на станции и т.д., то есть посмотреть на невесомость с биологической и медицинской точек зрения;

  5. Обработать материал, оформить его согласно общепринятым правилам;

6) Создать презентацию на основе обработанного материала.

Источники, которыми я пользовалась в процессе написания реферата – это учебные пособия, энциклопедии, интернет.


Глава 1. Вес тела и невесомость

1.1. Вес тела


В технике и быту широко используется понятие веса тела.

Весом тела называют суммарную силу упругости, действующую при наличии силы тяжести на все опоры, подвесы.

Вес тела P, то есть сила, с которой тело действует на опору, и сила упругости FУ, с которой опора действует на тело (рис.1), в соответствии с третьим законом Ньютона равны по модулю и противоположны по направлению: P = -Fу

Если тело находится в покое на горизонтальной поверхности или равномерно движется и на него действуют только сила тяжести FТ и сила упругости FУ со стороны опоры, то из равенства нулю векторной суммы этих сил следует равенство: FТ=- FУ.

Сопоставив выражения P = -Fу и FТ = - FУ, получим P = FТ, то есть вес P тела на неподвижной горизонтальной опоре равен силе тяжести FТ, но эти силы приложены к разным телам.

При ускоренном движении тела и опоры вес P будет отличаться от силы тяжести FТ.

По второму закону Ньютона при движении тела массой m под действием силы тяжести FТ и силы упругости Fу с ускорением a выполняется равенство FТ + FУ = ma.

Из уравнений P = -Fу и FТ + FУ = ma получаем: P = FТ – ma = mg – ma, или P = m( g – a ).

Рассмотрим случай движения лифта, когда ускорение a направлено вертикально вниз. Если координатную ось OY(рис.2) направить вертикально вниз, то векторы P, g и a оказываются параллельными оси OY, а их проекции положительными; тогда уравнение P = m(g – a) примет вид: Py = m(gУ – aУ).

Так как проекции положительны и параллельны координатной оси, их можно заменить модулями векторов: P = m(g – a).

Вес тела, у которого направление ускорения свободного и падения и ускорения совпадают, меньше веса покоящегося тела.[2]




1.2. Вес тела, движущегося с ускорением


Говоря  о весе тела в ускоренно движущемся лифте, рассматривается три случая (кроме случая покоя или равномерного движения):

  1. Лифт движется с ускорением, направленным вверх (перегрузки, вес тела больше силы тяжести, P=mg+ma); 

  2. Лифт движется с ускорением, направленным вниз (вес уменьшается, вес тела меньше силы тяжести, P=mg-ma); 

  3. Лифт падает (невесомость, вес тела равен нулю, P=0).

Эти три случая не исчерпывают качественно всех ситуаций. Имеет смысл рассмотреть и 4-ый случай, чтобы анализ был завершённым. (Действительно, во втором случае подразумевается, что a < g. Третий случай есть частный для второго при a = g. Случай a > g остался нерассмотренным.) Для этого можно задать ученикам вопрос, который сначала вызывает у них удивление: “Как должен двигаться лифт, чтобы человек мог ходить по потолку?”  Ученики быстро “догадываются”, что лифт должен двигаться вниз с ускорением большим g. Действительно: при увеличении ускорения движения лифта вниз, в соответствие с формулой P=mg-ma, вес тела будет уменьшаться. Когда ускорение a станет равным g, вес станет равным нулю. Если и дальше увеличивать ускорение, то можно предположить, что вес тела изменит направление.




После этого можно изобразить на рисунке вектор веса тела:


Можно решить эту задачу и в обратной формулировке: “Каков будет вес тела в лифте, движущемся вниз с ускорением a > g ?”  Эта задача немного труднее, т.к. ученикам нужно преодолеть инерцию мышления и поменять местами “верх” и “низ”.

Может существовать возражение, что 4-ый случай не рассматривается в учебниках потому, что он не встречается на практике. Но и падение лифта встречается тоже только в задачах, но, тем не менее, его рассматривают, т.к. это удобно и полезно.

Движение с ускорением, направленным вниз или вверх, наблюдается не только в лифте или ракете, но и при движении самолёта, совершающего фигуры высшего пилотажа, а также при движении тела по выпуклому или вогнутому мосту. Рассмотренному 4-му случаю соответствует движение по “мёртвой петле”. В верхней её точке ускорение (центростремительное) направлено вниз, сила реакции опоры - вниз, вес тела – вверх.[2]

Представим ситуацию: космонавт вышел из корабля в космос и с помощью индивидуального ракетного двигателя совершает прогулку по окрестностям. Возвращаясь, он несколько передержал двигатель включенным, подошел к кораблю с избытком скорости и стукнулся о него коленом. Будет ли ему больно?

– Не будет: ведь в невесомости космонавт легче перышка, – такой можно услышать ответ.

Ответ неправилен. Когда вы на Земле падали с забора, вы тоже были в состоянии невесомости. Ибо при ударе о земную поверхность вы ощутили заметную перегрузку, тем бóльшую, чем тверже то место, на которое вы упали, и чем больше была ваша скорость в момент контакта с землей.

Невесомость и весомость не имеют отношения к удару. Здесь важны масса и скорость, а не вес.

И все-таки космонавту при ударе о корабль будет не так больно, как вам при ударе о землю (при прочих равных условиях: одинаковых массах, относительных скоростях и одинаковой твердости препятствий). Масса корабля намного меньше массы Земли. Поэтому при ударе о корабль заметная часть кинетической энергий космонавта будет превращена в кинетическую энергию корабля, а на долю деформаций останется меньше. Корабль приобретет дополнительную скорость, а болевое ощущение космонавта будет не таким сильным большим.[4]


1.3. Невесомость


Если тело вместе с опорой свободно падает, то a = g, то из формулы

P = m(g – a) следует, что P = 0.

Исчезновение веса при движении опоры с ускорением свободного падения только под действием силы тяжести называется невесомостью.[2]

Есть два вида невесомости.

Потеря веса, которая возникает на большом расстоянии от небесных тел из-за ослабления притяжения, называется статической невесомостью. А состояние, в котором находится человек во время полёта по орбите, – динамической невесомостью.

Проявляются они совершенно одинаково. Ощущения человека одни и те же. Но причины разные.

Космонавты в полётах имеют дело только с динамической невесомостью.

Выражение «динамическая невесомость» означает: «невесомость, возникающая при движении».

Мы чувствуем притяжение Земли только тогда, когда сопротивляемся ему. Только когда «отказываемся» падать. А как только мы «согласились» падать, ощущение тяжести мгновенно пропадает.

Представьте себе - вы гуляете с собакой, держа её на ремешке. Собака куда-то устремилась, натянула ремешок. Вы чувствуете натяжение ремешка – «притяжение» собаки, – только пока сопротивляетесь. А если вы побежите за собакой, ремешок провиснет и ощущение притяжения исчезнет.

Также получается и с притяжением Земли.

Летит самолёт. В кабине приготовились к прыжку два парашютиста. Земля тянет их вниз. А они пока сопротивляются. Упёрлись ногами в пол самолёта. Чувствуют притяжение Земли – подошвы их ног с силой прижаты к полу. Они ощущают свой вес. «Ремешок натянут».

Но вот они согласились следовать туда, куда тянет их Земля. Стали на край люка и прыгнули вниз. «Ремешок провис». Ощущение притяжения Земли сразу же пропало. Они стали невесомы.

Можно представить продолжение этой истории.

Одновременно с парашютистами с самолёта сбросили большой пустой ящик. И вот летят рядом, с одной скоростью, кувыркаясь в воздухе, два человека, не раскрывшие парашютов, и пустой ящик.

Один человек протянул руку, схватился за летящий рядом ящик, открыл в нём дверцу и втянулся внутрь.

Теперь из двух человек один летит снаружи ящика, а другой летит внутри ящика.

У них будут абсолютно разные ощущения.

Тот, который летит снаружи, видит и чувствует, что он стремительно летит вниз. В ушах у него свистит ветер. Вдали видна приближающаяся Земля.

А тот, который летит внутри ящика, закрыл дверцу и начал, отталкиваясь от стенок, «плавать» по ящику. Ему кажется, что ящик спокойно стоит на Земле, а он, потеряв вес, плавает по воздуху, как рыба в аквариуме.

Строго говоря, разницы между обоими парашютистами нет никакой. Оба с одной и той же скоростью камнем летят к Земле. Но один сказал бы: «Я лечу», а другой: «Я плаваю на месте». Всё дело в том, что один ориентируется по Земле, а другой – по ящику, в котором летит.

Вот именно так и возникает состояние динамической невесомости в кабине космического корабля.

В первый момент может показаться непонятным вот что. Казалось бы, космический корабль летит параллельно Земле, как самолёт. А в горизонтально летящем самолёте никакой невесомости не бывает. Но мы знаем, что космический корабль-спутник непрерывно падает. Он гораздо больше похож на сброшенный с самолёта ящик, чем на самолёт.

Динамическая невесомость возникает иногда и на Земле. Невесомы, например, пловцы-ныряльщики, летящие в воду с вышки. Невесомы в течение нескольких секунд лыжники во время прыжка с трамплина. Невесомы падающие камнем вниз парашютисты, пока они не раскрыли парашюты. Для тренировок космонавтов секунд на тридцать – сорок создают невесомость в самолёте. Для этого лётчик делает «горку». Он разгоняет самолёт, круто взмывает наклонно вверх и выключает мотор. Самолёт начинает полёт по инерции, как брошенный рукой камень. Сперва немного поднимается, потом описывает дугу, заворачивая вниз. Пикирует к Земле. Всё это время самолёт находится в состоянии свободного падения. И всё это время в его кабине царит настоящая невесомость. Затем лётчик снова включает мотор и осторожно выводит самолёт из пикирования на нормальный горизонтальный полёт. При включении мотора невесомость сразу исчезает. [9]

В состоянии невесомости на все частицы тела, находящегося в состоянии невесомости, силы тяжести действуют, но нет внешних сил, приложенных к поверхности тела (например, реакций опоры), которые могли бы вызвать взаимные давления частиц друг на друга. Подобное же явление наблюдается для тел, находящихся в искусственном спутнике Земли (или в космическом корабле); эти тела и все их частицы, получив вместе со спутником соответствующую начальную скорость, движутся под действием сил тяготения вдоль своих орбит с равными ускорениями, как свободные, не оказывая взаимных давлений друг на друга, то есть находятся в состоянии невесомости. Как и на тело в лифте, на них действует сила тяготения, но нет внешних сил, приложенных к поверхностям тел, которые могли бы вызвать взаимные давления тел или их частиц друг на друга.

Вообще тело под действием внешних сил будет в состоянии невесомости, если: а) действующие внешние силы являются только массовыми (силы тяготения); б) поле этих массовых сил локально однородно, то есть силы поля сообщают всем частицам тела в каждом его положении одинаковые по модулю и направлению ускорения; в) начальные скорости всех частиц тела по модулю и направлению одинаковы (тело движется поступательно). Таким образом, любое тело, размеры которого малы по сравнению с земным радиусом, совершающее свободное поступательное движение в поле тяготения Земли, будет, при отсутствии других внешних сил, находиться в состоянии невесомости. Аналогичным будет результат для движения в поле тяготения любых других небесных тел.

Вследствие значительного отличия условий невесомости от земных условий, в которых создаются и отлаживаются приборы и агрегаты искусственных спутников Земли, космических кораблей и их ракет – носителей, проблема невесомости занимает важное место среди других проблем космонавтики. Это наиболее существенно для систем, имеющих емкости, частично заполненные жидкостью. К ним относятся двигательные установки с ЖРД (жидкостно – реактивными двигателями), рассчитанные на многократное включение в условиях космического полета. В условиях невесомости жидкость может занимать произвольное положение в емкости, нарушая тем самым нормальное функционирование системы (например, подачу компонентов из топливных баков). Поэтому для обеспечения запуска жидкостных двигательных установок в условиях невесомости применяются: разделение жидкой и газообразной фаз в топливных баках с помощью эластичных разделителей; фиксация части жидкости у заборного устройства систем сеток (ракетная ступень «Аджена»); создание кратковременных перегрузок (искусственной «тяжести») перед включением основной двигательной установки с помощью вспомогательных ракетных двигателей и др. Использование специальных приемов необходимо и для разделения жидкой и газообразной фаз в условиях невесомости в ряде агрегатов системы жизнеобеспечения, в топливных элементах системы энергопитания (например, сбор конденсата системой пористых фитилей, отделение жидкой фазы с помощью центрифуги). Механизмы космических аппаратов (для открытия солнечных батарей, антенн, для стыковки и т.п.) рассчитываются на работу в условиях невесомости.

Невесомость может быть использована для осуществления некоторых технологических процессов, которые трудно или невозможно реализовать в земных условиях (например, получение композиционных материалов с однородной структурой во всем объеме, получение тел точной сферической формы из расплавленного материала за счет сил поверхностного натяжения и др.). Впервые эксперимент по сварке различных материалов в условиях невесомости вакуума был осуществлен при полете советского космического корабля «Союз – 6» (1969). Ряд технологических экспериментов (по сварке, исследованию течения и кристаллизации расплавленных материалов и т.п.) был проведен на американской орбитальной станции «Скайлэб» (1973).

Ученые проводят в космосе различные эксперименты, ставят опыты, но они слабо представляют себе конечный результат этих действий. Но если какой - либо эксперимент дал определенный результат, то еще долгое время приходится его проверять, чтобы в конечном итоге объяснить и применить полученные знания на практике. [1]

Ниже приведены описания некоторых экспериментов и интересных новостей про невесомость, над которыми еще предстоит работа.


1.4. Это интересно


1.4.1. Пламя в невесомости

На Земле благодаря гравитации возникают конвекционные потоки, которые и определяют форму пламени. Они поднимают раскалённые частички сажи, которые излучают видимый свет. Благодаря этому мы видим пламя. В невесомости конвекционные потоки отсутствуют, частички сажи не поднимаются, а пламя свечи принимает сферическую форму. Так как материал свечи представляет собой смесь предельных углеводородов, они при сгорании выделяют водород, который горит голубым пламенем. Учёные стараются понять, как и почему огонь распространяется в невесомости. Изучение пламени в условиях невесомости необходимо для оценки пожароустойчивости космического корабля и при разработке специальных средств пожаротушения. Так можно обеспечить безопасность космонавтов и транспортных средств.[11]




1.4.2. Вибрация жидкости ускоряет ее кипение в невесомости

В невесомости кипение становится гораздо более медленным процессом. Однако, как обнаружили французские физики, вибрация жидкости может привести к резкому ее вскипанию. Этот результат имеет значение для космической индустрии.

Каждый из нас не раз наблюдал фазовый переход жидкости в газ под действием высокой температуры, т. е., проще говоря, процесс кипения. Пузырьки пара, отрываясь от источника тепла, устремляются вверх, а на их место поступает новая порция жидкости. В результате кипение сопровождается активным перемешиванием жидкости, что многократно увеличивает скорость ее превращения в пар.

Ключевую роль в этом бурном процессе играет сила Архимеда, действующая на пузырек, которая, в свою очередь, существует благодаря силе тяжести. В условиях же невесомости нет веса, нет понятия «тяжелее» и «легче», и потому пузырьки нагретого пара не будут никуда всплывать. Вокруг нагревательного элемента образуется прослойка пара, которая препятствует передаче тепла всему объему жидкости. По этой причине кипение жидкостей в невесомости (но при том же давлении, а вовсе не в вакууме!) будет протекать совершенно иначе, чем на Земле. Детальное понимание этого процесса крайне важно для успешного функционирования космических аппаратов, несущих на борту тонны жидкого топлива.

Чтобы разобраться в этом процессе, очень важно понять, какие физические явления могут ускорять кипение в невесомости. В недавней статье французских физиков описываются результаты экспериментального исследования того, как высокочастотные вибрации влияют на скорость кипения.

В качестве рабочего вещества исследователи выбрали жидкий водород — самое легкое ракетное топливо. Состояние невесомости создавалось искусственно, с помощью сильного неоднородного магнитного поля, которое как раз компенсировало силу тяжести (про магнитную левитацию читайте в нашей заметке Магнитная сверхпроводимость: левитация в жидком кислороде). Температура и давление образца были подобраны так, чтобы фазовый переход происходил как можно медленнее и можно было бы заметить все его особенности.

Основной результат экспериментов французских физиков состоит в том, что в условиях невесомости вибрация ускоряет превращение жидкости в пар. Под действием вибрации внутри слегка перегретой жидкости появляется «объемная рябь»: сеть мелких, размером доли миллиметра, пузырьков пара в жидкости. Вначале эти пузырьки растут медленно, но спустя 1-2 секунды от начала воздействия весь процесс резко убыстряется: жидкость в буквальном смысле слова вскипает.

Как утверждают авторы, есть две причины такого поведения. Во-первых, пока пузырьки пара мелкие, вязкость жидкости как бы «держит» их на месте, не дает им быстро сближаться. Для крупных же пузырьков вязкость отходит на второй план, и их слияние и дальнейший рост становится интенсивнее. Вторая причина кроется в самой сути математических законов, управляющих движением жидкостей. Эти законы нелинейны, а значит, внешние вибрации не только заставляют жидкость «мелко трястись», но и порождают в ней крупномасштабные течения. Именно эти течения, разогнавшись, эффективно перемешивают рабочий объем и приводят к убыстрению процесса.

Авторы работы подчеркивают, что обнаруженное ими явление имеет не только прикладной, но и чисто научный интерес. В их экспериментах сложные гидродинамические течения, сопровождающие эволюцию сети пузырьков, идут параллельно с самим фазовым переходом. Оба этих явления поддерживают и усиливают друг друга, приводя к крайней нестабильности жидкости даже в невесомости.[8]



Кипение воды на Земле и в условиях невесомости (изображение с сайта nasa.gov)


Итак, разобравшись в причинах возникновения невесомости и в особенностях этого явления можно переходить к вопросу о влиянии ее на организм человека.


  1   2

Похожие:

Реферат по физике на тему: невесомость работу iconРеферат по физике на тему: «Естественная и искусственная радиоактивность»
Сам же реферат я представляю как текст, не сильно выходящий за рамки школьного курса и наиболее понятно, на мой взгляд, объясняющий...
Реферат по физике на тему: невесомость работу iconРеферат на тему: «Влияние строительных материалов на здоровье человека» Работу
Государственное бюджетное образовательное учреждение среднего профессионального образования
Реферат по физике на тему: невесомость работу iconРеферат на тему: Обучение письму в начальных классах Работу
«Рунгинская средняя общеобразовательная школа Буинского муниципального района Республики Татарстан»
Реферат по физике на тему: невесомость работу iconРеферат по физике на тему «Направленный взрыв.»
Целью нашего реферата было изучение получение Направленного взрыва и его использование в мирных целях
Реферат по физике на тему: невесомость работу iconРеферат по физике на тему: Принцип
Выдающийся физик, создатель теории относительности, один из созда­телей квантовой теории и статистической физики
Реферат по физике на тему: невесомость работу iconЕ. А. Коломиец реферат по курсу “Зоопсихология” представляет собой самостоятельную работу студента, в которой излагается сущность какого-либо вопроса учебной программы на основе анализа учебной и научной литературы
Содержание реферата должно строго соответствовать заявленной теме. Можно воспользоваться предложенной ниже тематикой и литературой...
Реферат по физике на тему: невесомость работу iconРеферат по физике на тему
Оттавы. В составе команды, занимавшейся экологической очисткой территории станции, работал будущий президент США джимми Картер, тогда...
Реферат по физике на тему: невесомость работу iconРеферат по литературе на тему: Работу
Михаил Афанасьевич Булгаков – писатель с необычной судьбой: основная часть его литературного наследия стала известна читающему миру...
Реферат по физике на тему: невесомость работу iconРеферат по физике на тему «Производство, передача и использование электроэнергии»
Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником...
Реферат по физике на тему: невесомость работу iconРеферат по физике на тему: “Атомное ядро”
Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница