Faculty of Mathematics and Computer Science




Скачать 57.62 Kb.
НазваниеFaculty of Mathematics and Computer Science
Дата04.02.2013
Размер57.62 Kb.
ТипДокументы
syllabus


1. Information regarding the programme

1.1 Higher education institution

Babeş-Bolyai University

1.2 Faculty

Faculty of Mathematics and Computer Science

1.3 Department

Department of Computer Science

1.4 Field of study

Computers and Information Technology, Computer Science

1.5 Study cycle

Bachelor

1.6 Study programme / Qualification

Information engineering


2. Information regarding the discipline

2.1 Name of the discipline

Public-Key Cryptography

2.2 Course coordinator

Assoc.Prof.PhD. Septimiu Crivei

2.3 Seminar coordinator

Assoc.Prof.PhD. Septimiu Crivei

2.4. Year of study

3

2.5 Semester

5

2.6. Type of evaluation

P

2.7 Type of discipline

Optional


3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week

3

Of which: 3.2 course

2

3.3 seminar/laboratory

1

3.4 Total hours in the curriculum

42

Of which: 3.5 course

28

3.6 seminar/laboratory

14

Time allotment:

hours

Learning using manual, course support, bibliography, course notes

28

Additional documentation (in libraries, on electronic platforms, field documentation)

14

Preparation for seminars/labs, homework, papers, portfolios and essays

17

Tutorship

10

Evaluations

14

Other activities: ..................

0

3.7 Total individual study hours

83

3.8 Total hours per semester

125

3.9 Number of ECTS credits

5


4. Prerequisites (if necessary)

4.1. curriculum



4.2. competencies




5. Conditions (if necessary)

5.1. for the course



5.2. for the seminar /lab activities




6. Specific competencies acquired

Professional competencies

  • Understanding of basic concepts of mathematics and use them to problem-solving activities

  • Ability to understand and approach problems of modeling nature from other sciences

Transversal competencies

  • Ability to work independently and/or in a team in order to solve problems in defined professional contexts


7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline

  • To present mathematical algorithms used in public-key cryptography.

7.2 Specific objective of the discipline

  • Number-theoretic and algebra algorithms will be studied and implemented in projects.


8. Content

8.1 Course

Teaching methods

Remarks

  1. Classical cryptography. Examples

exposition, algorithmization




  1. Public-key cryptography

exposition, algorithmization




  1. Algorithm complexity

exposition, algorithmization




  1. Congruences

exposition, algorithmization




  1. Primes, quadratic residues

exposition, algorithmization




  1. Algorithms for testing primality

exposition, algorithmization




  1. Factorization algorithms for integers I

exposition, algorithmization




  1. Factorization algorithms for integers II

exposition, algorithmization




  1. Rabin public-key cryptosystem

exposition, algorithmization




  1. ElGamal public-key cryptosystem, finite fields

exposition, algorithmization




  1. Factorization of polynomials: Berlekamp’s algortihm

exposition, algorithmization




  1. Discrete logarithm

exposition, algorithmization




  1. Practical aspects of public-key cryptosystems I

exposition, algorithmization




  1. Practical aspects of public-key cryptosystems II

exposition, algorithmization




Bibliography

1. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to cryptography and coding theory, Editura EFES, 2006.

2. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.

3. N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, 1994.

4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography. CRC Press,

Boca Raton, 1997. (http://www.math.uwaterloo.ca/~ajmeneze)

5. B. Schneier, Applied Cryptography. John Wiley & Sons, 1996.

8.2 Laboratory

Teaching methods

Remarks

  1. Classical cryptography

explanation, testing

The lab is scheduled as 2 hours every second week

  1. Algorithm complexity

explanation, testing




  1. Modular arithmetics

explanation, testing




  1. Algorithms for testing primality

explanation, testing




  1. Factorization algorithms

explanation, testing




  1. Public-key cryptography

explanation, testing




  1. Practical aspects of public-key cryptosystems

explanation, testing




Bibliography

1. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to cryptography and coding theory, Editura EFES, 2006.

2. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography. CRC Press,

Boca Raton, 1997. (http://www.math.uwaterloo.ca/~ajmeneze)

3. B. Schneier, Applied Cryptography. John Wiley & Sons, 1996.


9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program


  • The contents is directed towards practical applications of public-key cryptography. The topic is present in the computer science study programme of all major universities.


10. Evaluation

Type of activity

10.1 Evaluation criteria

10.2 Evaluation methods

10.3 Share in the grade (%)

10.4 Course

Use of basic concepts in examples

Assessments

50

10.5 Lab

Implement course concepts and algorithms

Practical examination

50

10.6 Minimum performance standards

  • Grade 5


Date Signature of course coordinator Signature of seminar coordinator

25.09.2012 Assoc.Prof.PhD. Septimiu CRIVEI Assoc.Prof.PhD. Septimiu CRIVEI


Date of approval Signature of the head of department

25.09.2012 Assoc.Prof.PhD. Octavian AGRATINI

Похожие:

Faculty of Mathematics and Computer Science iconFaculty of Mathematics and Computer science

Faculty of Mathematics and Computer Science iconFaculty of Mathematics and Computer science

Faculty of Mathematics and Computer Science iconFaculty of Mathematics and Computer Science

Faculty of Mathematics and Computer Science iconFaculty of Mathematics and Computer Science

Faculty of Mathematics and Computer Science iconMathematics and Computer Science in Hungarian

Faculty of Mathematics and Computer Science iconDidactics of Mathematics and Computer Science

Faculty of Mathematics and Computer Science iconPh. D. Mathematics with concentration in Computer Science

Faculty of Mathematics and Computer Science iconComputer Science and applied mathematics

Faculty of Mathematics and Computer Science iconКнига является завершением более чем 5-тысячелетнего периода в развитии «Учения о гармонии»
В 2009 г международное издательство “World Scientific” опубликовало книгу: A. P. Stakhov. The Mathematics of Harmony. From Euclid...
Faculty of Mathematics and Computer Science iconКнига является завершением более чем 5-тысячелетнего периода в развитии «Учения о гармонии»
В 2009 г международное издательство “World Scientific” опубликовало книгу: A. P. Stakhov. The Mathematics of Harmony. From Euclid...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница