Учебно-методический комплекс по дисциплине Биохимия




НазваниеУчебно-методический комплекс по дисциплине Биохимия
страница7/14
Дата28.01.2013
Размер1.81 Mb.
ТипУчебно-методический комплекс
1   2   3   4   5   6   7   8   9   10   ...   14
Раздел 4. Биохимия физических упражнений и спорта


Лекция 7. Биохимические изменения в организме при мышечной работе.

Биохимические изменения в организме при утомлении и в период отдыха после работы.


7.1. Биохимические изменения при мышечной работе

Любая физическая работа сопровождается изменением скорости метаболических процессов в организме, появлением биохимических сдвигов в работающих мышцах, во внутренних органах и в крови.

В основе всех биохимических изменений, возникающих при работе, лежит изменение направленности метаболизма. При выполнении физической нагрузки в организме повышается скорость катаболических процессов, сопровождающихся выделением энергии и синтезом АТФ, при одновременном снижении скорости анаболизма, потребляющего значительное количество АТФ для обеспечения различных синтезов. Такое изменение направленности метаболизма приводит к улучшению энергообеспечения работающих мышц, к повышению мощности и продолжительности работы.

7.2. Биохимические изменения в скелетных мышцах

При выполнении физической работы в мышцах происходят глубокие изменения, обусловленные прежде всего интенсификацией процессов ресинтеза АТФ.

Использование креатинфосфата (КрФ) в качестве источника энергии приводит к снижению его концентрации в мышечных клетках и накоплению в них креатина (Кр).

При любой работе для получения АТФ используется мышечный гликоген. Поэтому его концентрация в мышцах снижается независимо от характера работы. При выполнении интенсивных нагрузок в мышцах быстро уменьшается запас гликогена, образуется и накапливается молочная кислота. За счет накопления молочной кислоты повышается кислотность внутри мышечных клеток. Увеличение содержания лактата в мышечных клетках вызывает повышение в них осмотического давления, вследствие чего в миоциты из капилляров и межклеточных пространств поступает вода и развивается набухание мышц («забитость» мышц).

Продолжительная мышечная работа небольшой мощности вызывает плавное снижение концентрации гликогена в мышцах. В данном случае распад гликогена протекает аэробно, с потреблением кислорода.

Повышается скорость распада белков. Особенно ускоряется распад белков при выполнении силовых упражнений, в первую очередь сократительных, входящих в состав миофибрилл. Вследствие распада белков в мышечных клетках повышается содержание свободных аминокислот и продуктов их расщепления - кетокислот и аммиака.

Мышечная деятельность может привести к повреждениям внутриклеточных структур - миофибрилл, митохондрий, разнообразных биомембран. Это ведет к нарушению проведения нервного импульса к цистернам, содержащим ионы кальция. Нарушение целостности сарколеммы сопровождается потерей мышцами многих важных веществ, в том числе ферментов, которые через поврежденную сарколемму уходят из мышечных клеток в лимфу и кровь.

7.3. Биохимические сдвиги в головном мозге

Во время мышечной деятельности в мотонейронах коры головного мозга происходит формирование и последующая передача двигательного нервного импульса. Оба эти процесса осуществляются с потреблением энергии молекул АТФ. Образование АТФ в нервных клетках происходит аэробно, путем окислительного фосфорилирования. Поэтому при мышечной работе увеличивается потребление мозгом кислорода из протекающей крови. Другой особенностью энергетического обмена в нейронах является то, что основным субстратом окисления является глюкоза, поступающая с током крови.

В связи с такой спецификой энергоснабжения нервных клеток любое нарушение снабжения мозга кислородом или глюкозой неминуемо ведет к снижению его функциональной активности, что у спортсменов может проявляться в форме головокружения или обморочного состояния.

7.4. Биохимические сдвиги в миокарде

Во время мышечной деятельности происходит усиление и учащение сердечных сокращений, что требует большего количества энергии по сравнению с состоянием покоя. Однако энергообеспечение сердечной мышцы осуществляется главным образом за счет аэробного ресинтеза АТФ. Анаэробные пути ресинтеза АТФ включаются лишь при очень интенсивной работе (ЧСС более 200 уд./мин).

Большие возможности аэробного энергообеспечения в миокарде обусловлены особенностью строения этой мышцы. В отличие от скелетных мышц в сердечной имеется более развитая, густая сеть капилляров, что позволяет извлекать из протекающей крови больше кислорода и субстратов окисления. Кроме того, в клетках миокарда имеется больше митохондрий, содержащих ферменты тканевого дыхания. В качестве источников энергии миокард использует различные вещества, доставляемые кровью: глюкозу, жирные кислоты, кетоновые тела, глицерин. Собственные запасы гликогена практически не используются; они необходимы для энергообеспечения миокарда при истощающих нагрузках.

Во время интенсивной работы, сопровождающейся увеличением концентрации лактата в крови, миокард извлекает из крови лактат и окисляет его до углекислого газа и воды. При окислении одной молекулы молочной кислоты синтезируется до 18 молекул АТФ. Использование лактата в качестве источника энергии позволяет дольше поддерживать в крови необходимую концентрацию глюкозы, что очень существенно для биоэнергетики нервных клеток, для которых глюкоза является почти единственным субстратом окисления. Окисление лактата в сердечной мышце также способствует нормализации кислотно-щелочного баланса, так как при этом в крови снижается концентрация этой кислоты.

7.5. Биохимические сдвиги в крови

При выполнении мышечной работы в крови чаще всего обнаруживаются следующие изменения:

  1. Повышение концентрации белков в плазме крови: а) усиленное потоотделение приводит к уменьшению содержания воды в плазме крови, к ее сгущению, в результате чего возрастают концентрации всех компонентов плазмы, в том числе белков; б) вследствие повреждения клеточных мембран наблюдается выход внутриклеточных белков в плазму крови. Однако при очень продолжительной работе возможно снижение концентрации белков плазмы. В этом случае часть белков из кровяного русла переходит в мочу, а другая часть используется в качестве источников энергии.

  2. Изменение концентрации глюкозы в крови во время работы характеризуется фазностью. В начале работы обычно уровень глюкозы в крови возрастает (в печени имеются большие запасы гликогена и глюкогенез протекает с высокой скоростью). С другой стороны, в начале работы мышцы тоже обладают значительными запасами гликогена, которые они используют для своего энергообеспечения, и поэтому не извлекают глюкозу из кровяного русла. По мере выполнения работы снижается содержание гликогена как в печени, так и в мышцах. В связи с этим печень направляет все меньше и меньше глюкозы в кровь, а мышцы, наоборот, начинают в большей мере использовать глюкозу крови для получения энергии. При длительной работе часто наблюдается снижение концентрации глюкозы в крови (гипогликемия), что обусловлено истощением запасов гликогена и в печени, и в мышцах.

3. Повышение концентрации лактата в крови наблюдается практически при любой спортивной деятельности, однако степень возрастания концентрации лактата в значительной мере зависит от характера выполненной работы и тренированности спортсмена. Наибольший подъем уровня лактата в крови отмечается при выполнении физических нагрузок в зоне субмаксимальной мощности, так как в этом случае главным источником энергии для работающих мышц является анаэробный гликолиз, приводящий к образованию и накоплению молочной кислоты.

В покое, до работы содержание лактата в крови равняется 1-2 ммоль/л (0,1-0,2 г/л). После работы «до отказа» в зоне субмаксимальной мощности у спортсменов средней квалификации концентрация лактата в крови увеличивается до 8-10 ммоль/л, у высокотренированных этот рост может достигать 18-20 ммоль/л и выше. В литературе описаны случаи повышения лактата в крови у очень хорошо подготовленных спортсменов до 30-32 ммоль/л.

При проведении анализа крови на содержание лактата необходимо учитывать, что увеличение его концентрации в крови происходит не сразу, а через несколько минут после окончания работы. Поэтому забор крови следует делать примерно через 5 мин после завершения нагрузки. При взятии крови в более поздние сроки концентрация лактата окажется заниженной, так как часть его будет извлечена из кровяного русла клетками миокарда и печени.

4. Водородный показатель (рН). Образующийся при интенсивной работе лактат является сильной кислотой и его поступление в кровяное русло должно вести к повышению кислотности крови. Однако первые порции лактата, диффундирующие из мышц в кровяное русло, нейтрализуются буферными системами крови. В дальнейшем, по мере исчерпания емкости буферных систем, наблюдается повышение кислотности крови (некомпенсированный ацидоз). В покое значение рН венозной крови равно 7,35-7,36. При выполнении физических упражнений субмаксимальной мощности РН снижается у спортсменов средней квалификации до 7,1-7,2, а у спортсменов мирового класса снижение водородного показателя может быть до 6,8.

  1. Повышение концентрации свободных жирных кислот и кетоновых тел наблюдается при длительной мышечной работе вследствие мобилизации жира из жировых депо и последующим кетогенезом в печени. Увеличение концентрации кетоновых тел (ацетоуксусная и β-оксимасляная кислоты) также вызывает повышение кислотности и снижение рН крови.

  2. Мочевина. При кратковременной работе концентрация мочевины в крови увеличивается незначительно, а при длительной физической работе уровень мочевины в крови может возрасти в 4-5 раз. Причиной увеличения содержания мочевины в крови является усиление катаболизма белков под воздействием физических нагрузок, особенно силового характера. Распад белков, в свою очередь, ведет к накоплению свободных аминокислот, при распаде которых образуется в большом количестве аммиак. В печени большая часть образовавшегося аммиака превращается в мочевину.

    7.6. Биохимия утомления

    Утомление - это временное снижение работоспособности, вызванное глубокими биохимическими, функциональными и структурными сдвигами, возникающими в ходе выполнения физической работы.

7.6.1. Развитие охранительного (запредельного) торможения

При возникновении в организме во время мышечной работы биохимических и функциональных сдвигов с различных рецепторов (хеморецепторов, осморецепторов, проприорецепторов и др.) в центральную нервную систему по афферентным нервам поступают соответствующие сигналы. При достижении значительной глубины этих сдвигов в головном мозге формируется охранительное торможение, распространяющееся на двигательные центры, иннервирующие скелетные мышцы. В результате в мотонейронах уменьшается выработка двигательных импульсов, что в итоге приводит к снижению физической работоспособности. Субъективно охранительное торможение воспринимается как чувство усталости. В зависимости от распространенности возникших в организме изменений усталость может быть локальной (местной) или общей.

Охранительное торможение и, следовательно, усталость могут быть снижены за счет эмоций. Высокий эмоциональный подъем позволяет организму сохранять высокую работоспособность, несмотря на возникновение и нарастание опасных для жизнедеятельности биохимических и функциональных изменений, которые могут привести к тяжелым последствиям.

Развитие тормозных процессов в ЦНС зависит от возраста. Для детей и пожилых людей характерно раннее наступление усталости и более выраженные явления охранительного торможения.

7.6.2. Нарушение функций вегетативных и регуляторных систем организма

1) Снижение работоспособности сердечно-сосудистой и дыхательной систем.

2) Уменьшение функциональной активности печени. В связи с такой важной ролью печени в обеспечении мышечной деятельности в спортивной практике широкое применение находят гепатопротекторы - фармакологические препараты, улучшающие обменные процессы в печени.

3) При выполнении физической работы, особенно продолжительной, возможно снижение функции надпочечников. В результате уменьшается выделение в кровь гормонов (адреналин, глюкокортикоиды), вызывающих в организме биохимические и функциональные сдвиги, благоприятные для функционирования мышц.

7.6.3. Исчерпание энергетических резервов

В спортивной литературе часто используются термины энергетические резервы и доступные источники энергии. Под этим понимается та часть углеводов, жиров и аминокислот, которая может служить источником энергии при выполнении мышечной работы. Такими источниками энергии можно считать мышечный КрФ, который может быть почти полностью использован при интенсивной работе, большую часть мышечного и печеночного гликогена, часть запасов жира, находящихся в жировых депо, а также аминокислоты, которые начинают окисляться при очень продолжительных нагрузках. Энергетическим резервом можно также считать способность организма поддерживать в крови во время выполнения физической работы необходимый уровень глюкозы.

Для поддержания энергетических ресурсов в организме при выполнении продолжительной работы (например, лыжные гонки, марафонский бег, шоссейные велогонки) организуется питание на дистанции, что позволяет спортсменам длительно сохранять работоспособность.

7.6.4. Образование и накопление в организме лактата

В условиях повышенной кислотности, вызванной нарастанием концентрации лактата, снижается сократительная способность белков, участвующих в мышечной деятельности, уменьшается каталитическая активность белков-ферментов, в том числе АТФазная активность миозина и активность кальциевой АТФазы (кальциевый насос), изменяются свойства мембранных белков, что приводит к повышению проницаемости биологических мембран. Кроме того, накопление лактата в мышечных клетках ведет к набуханию этих клеток вследствие поступления в них воды, что в итоге уменьшает сократительные возможности мышц.

7.6.5. Повреждение биологических мембран свободнорадикальным окислением

Свободные радикалы кислорода, обладая высокой химической активностью, вызывают окисление белков, липидов и нуклеиновых кислот. Чаще всего окислению подвергается липидный слой биологических мембран. Такое окисление называется перекисным окислением липидов. В физиологических условиях свободнорадикальное окисление протекает с низкой скоростью, так как ему противостоит защитная антиоксидантная система организма, предупреждающая накопление свободных радикалов кислорода и ограничивающая тем самым скорость вызываемых ими реакций окисления. Физические нагрузки, свойственные современному спорту, приводят к чрезмерному образованию активных форм кислорода и значительному росту скорости ПОЛ. К повышению скорости свободнорадикального окисления также приводит ацидоз. Чрезмерная активация ПОЛ оказывает негативное влияние на мышечную деятельность.

Так, повышение проницаемости мембран нервных волокон и саркоплазматического ретикулума миоцитов, вызываемое ПОЛ, затрудняет передачу двигательных нервных импульсов и тем самым снижает сократительные возможности мышцы. Повреждающее воздействие перекисного окисления на цистерны, содержащие ионы кальция, неизбежно приводит к нарушению функции кальциевого насоса и ухудшению релаксационных свойств мышц. При повреждении митохондриальных мембран снижается эффективность окислительного фосфорилирования (тканевого дыхания), что ведет к уменьшению аэробного энергообеспечения мышечной работы. Повышение проницаемости оболочки мышечных клеток - сарколеммы - может привести к потере мышечными клетками многих важных веществ, которые будут уходить из них в кровь и лимфу.

В настоящее время для предупреждения утомления и сохранения физической работоспособности в спортивной практике применяются различные экзогенные средства, способные повышать емкость антиоксидантной системы организма. К ним прежде всего относится токоферол (витамин Е) - естественный антиоксидант организма.

7.7. Восстановление при мышечной работе

Восстановление является важнейшим периодом в подготовке спортсмена, так как именно в это время в организме закладываются основы роста спортивной работоспособности, развития скоростно-силовых качеств и выносливости. Знание молекулярных механизмов восстановления необходимо тренеру для эффективного управления учебно-тренировочным процессом.

Восстановление условно делится на две фазы: срочное и отставленное.

7.7.1. Срочное восстановление

На этом этапе устраняются продукты анаэробного обмена, главными из которых являются креатин и лактат.

Креатин образуется и накапливается в мышечных клетках во время физических нагрузок за счет креатинфосфатной реакции. Эта реакция обратима. Во время отдыха она протекает в обратном направлении. Обязательным условием превращения Кр в КрФ является избыток АТФ, который создается в мышцах после работы, когда уже нет больших энергозатрат на мышечную деятельность. Источником АТФ при восстановлении является тканевое дыхание, протекающее с достаточно высокой скоростью и потребляющее значительное количество кислорода. В качестве окисляемых субстратов чаще используются жирные кислоты. На устранение Кр требуется не более 5 мин. В течение этого времени наблюдается повышенное потребление кислорода, называемое алактатным кислородным долгом, который характеризует вклад креатинфосфатного пути ресинтеза АТФ в энергообеспечение выполненной физической нагрузки.

Наибольшие величины алактатного кислородного долга (8-10 л) наблюдаются после выполнения физических нагрузок в зоне максимальной мощности.

Лактат образуется и накапливается в результате функционирования гликолитического пути ресинтеза АТФ. Устранение молочной кислоты происходит преимущественно во внутренних органах, так как она легко выходит из мышечных клеток в кровяное русло. Лактат, поступающий из крови в миокард, подвергается аэробному окислению и превращается в конечные продукты - С02 и Н20. Такое окисление требует кислорода и сопровождается выделением энергии, которая используется для обеспечения работы сердечной мышцы. Значительная часть лактата из крови попадает в печень и превращается в глюкозу (глюконеогенез). Синтез глюкозы из лактата требует энергии АТФ, источником которого служит тканевое дыхание, протекающее с повышенной скоростью и потребляющее избыточное (по сравнению с покоем) количество кислорода.

Другая часть лактата из крови поступает в почки. В почках, так же как и в миокарде, лактат может окисляться с участием кислорода до углекислого газа и воды, давая этому органу энергию. Часть лактата через почки поступает в состав мочи.

Выделяется из организма молочная кислота также в составе пота. У спортсменов содержание лактата в поте может значительно превышать его уровень в крови. Поэтому использование после тренировки сауны или бани позволяет ускорить выделение из организма молочной кислоты.

Для устранения избытка лактата обычно требуется не более 1,5-2 ч. В это время наблюдается повышенное (по сравнению с дорабочим уровнем) потребление кислорода, поскольку все превращения лактата протекают с участием кислорода.

Повышенное потребление кислорода в ближайшие 1,5-2 ч после завершения мышечной работы, необходимое для устранения лактата, называется лактатным кислородным долгом. Лакгатный кислородный долг характеризует вклад гликолитического пути ресинтеза АТФ в энергообеспечение проделанной работы. Наибольшие величины лактатного кислородного долга (18-20 л) определяются после физической нагрузки в зоне субмаксималъной мощности.

Частично креатин и лактат могут устраняться и во время тренировки: при снижении интенсивности выполняемых физических упражнений, а также в промежутках отдыха. Такое восстановление называется текущим.

7.7.2. Отставленное восстановление

В этот период в организме восполняются запасы химических соединений и восстанавливаются внутриклеточные структуры, разрушенные или поврежденные во время мышечной работы. Основными биохимическими процессами, составляющими отставленное восстановление, являются синтезы гликогена, жиров и белков.

Синтез гликогена протекает в мышцах и в печени, причем в первую очередь накапливается мышечный гликоген. Синтезируется гликоген главным образом из глюкозы, поступающей в организм с пищей. Предельное время восстановления в организме запасов гликогена - 24–36 ч.

Синтез жиров осуществляется в жировой ткани. Вначале образуются глицерин и жирные кислоты, затем они соединяются в молекулу жира. Жир также образуется в стенке тонкой кишки путем ресинтеза из продуктов переваривания пищевого жира. С током лимфы, а затем крови ресинтезированный жир поступает в жировую ткань. Для восполнения запасов жира необходимо не более 36^48 ч.

Синтез белков в основном идет в мышечной ткани. Часть аминокислот (незаменимых) обязательно должна поступать с пищей. Максимальное время синтеза белков - 48-72 ч.

Отставленное восстановление также включает и восстановление (репарацию) поврежденных внутриклеточных структур. Это касается миофибрилл, митохондрий, различных клеточных мембран. По времени это самый длительный процесс; он требует до 72-96 ч.

Все биохимические процессы, составляющие отставленное восстановление, протекают с потреблением энергии, источником которой является АТФ, возникающий за счет тканевого дыхания. Поэтому для фазы отставленного восстановления характерно несколько повышенное потребление кислорода, но не такое выраженное, как при срочном восстановлении.

Важнейшей особенностью отставленного восстановления является наличие суперкомпенсации (или сверхвосстановления). Суть этого явления заключается в том, что вещества, разрушенные при работе, во время восстановления синтезируются в больших концентрациях по сравнению с их дорабочим, исходным уровнем. Суперкомпенсация носит временный характер, она обратима. Но если суперкомпенсация возникает часто (при регулярных тренировках), то это ведет к постепенному росту исходного уровня данного вещества.

Основной причиной сверхвосстановления является повышенное содержание в крови гормонов, влияющих на синтетические процессы (инсулин, тестостерон и др.). Чем выше скорость расщепления какого-либо вещества во время работы, тем быстрее происходит его синтез при восстановлении и раньше наступает суперкомпенсация.

Высота суперкомпенсации (степень превышения исходного уровня) определяется глубиной распада веществ при работе. Чем глубже распад вещества при работе, тем выраженнее и выше суперкомпенсация. Эта особенность суперкомпенсации заставляет тренера применять на тренировках упражнения большой мощности и продолжительности, чтобы вызвать в организме спортсмена достаточно глубокий распад тех веществ, от содержания которых значительно зависит работоспособность. На высоте суперкомпенсации существенно возрастают все качества двигательной деятельности (сила, скорость, выносливость), что, несомненно, сказывается на спортивных результатах. Обязательным условием полноценного восстановления является качественное питание.


Лекция 8. Закономерности биохимической адаптации в процессе спортивной тренировки.

Биохимические основы скоростно-силовых качеств спортсменов и методов их развития. Биохимические основы выносливости

1   2   3   4   5   6   7   8   9   10   ...   14

Похожие:

Учебно-методический комплекс по дисциплине Биохимия iconУчебно-методический комплекс по дисциплине «Биохимия продуктов питания» составлен в соответствии с требованиями национально-регионального компонента к обязательному минимуму содержания и уровню подготовки дипломированного специалиста по циклу общематематических и естественнонаучных дисциплин государ
Учебно-методический комплекс: Биохимия продуктов питания (Учебная и рабочая программы, методические материалы). Направление 110300...
Учебно-методический комплекс по дисциплине Биохимия iconУчебно-методический комплекс по дисциплине Биохимия
Дисциплина входит в федеральный компонент цикла дисциплин предметной подготовки и является обязательной для изучения
Учебно-методический комплекс по дисциплине Биохимия iconУчебно-методический комплекс по дисциплине биохимия (название)
Дисциплина входит в федеральный компонент цикла общепрофессиональных дисциплин и является обязательной для изучения
Учебно-методический комплекс по дисциплине Биохимия iconУчебно-методический комплекс по дисциплине дс. 02. 1
Учебно-методический комплекс по дисциплине дс. 02 “Экологическая анатомия растений” составлен в соответствии с требованиями Государственного...
Учебно-методический комплекс по дисциплине Биохимия iconУчебно-методический комплекс по дисциплине «Философия». Таганрог: Изд-во трту, 2006. 80 с. Учебно-методический комплекс по дисциплине «Философия» подготовлен в соответствии с новым государственным образовательным стандартом по дисциплине «Философия».
Составители: М. А. Дедюлина, В. А. Ивлиев, Е. В. Папченко, В. С. Поликарпов, О. В. Шипелик
Учебно-методический комплекс по дисциплине Биохимия iconУчебно-методический комплекс по дисциплине ен. Ф. 07. «Геология» как часть образовательной программы является совокупностью учебно-методических материалов, способствующих
Учебно-методический комплекс по дисциплине ен. Ф. 07. «Геология» составлен в соответствии с требованиями Государственного образовательного...
Учебно-методический комплекс по дисциплине Биохимия iconУчебно-методический комплекс по дисциплине Иностранные языки
...
Учебно-методический комплекс по дисциплине Биохимия iconУчебно-методический комплекс по дисциплине Схемотехника ЭВМ
...
Учебно-методический комплекс по дисциплине Биохимия iconУчебно-методический комплекс по дисциплине Иностранные языки
...
Учебно-методический комплекс по дисциплине Биохимия iconУчебно-методический комплекс по дисциплине Иностранные языки
...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница