Образовательная программа по предмету «Физика»




НазваниеОбразовательная программа по предмету «Физика»
страница1/5
Дата13.01.2013
Размер0.78 Mb.
ТипОбразовательная программа
  1   2   3   4   5


Муниципальное общеобразовательное учреждение

«Рыбкинская средняя общеобразовательная школа»

Новосергиевского района Оренбургской области



«Рассмотрено»

на заседании МО

протокол №____ от «____»______ 20___г


Согласовано

Зам.директора по УВР

___________/Осипова В.Н,/

_________________________


«Утверждаю»

Директор МОУ «Рыбкинская СОШ»

_______________/ Рябых З.В.

приказ № ___от ____20___г.



ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

по предмету

«Физика»


Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н.


10 -11 класс

на 2010 – 2011 учебный год


Составитель: Окшина Л.А.

учитель математики первой

квалификационной категории


2010 – 2011 уч. год

с. Рыбкино Новосергиевского района Оренбургской области

Рабочая программа по физике ориентированная на учебники Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. «Физика-10» и «Физика 11»

(136 часов. Из них 10 класс 68 часов –2 часа в неделю

и 11 класс 68 часов –2 часа в неделю)

Пояснительная записка


Значение физики в школьном образовании определяется ролью физической науки в жизни современного общества, ее влиянием на темпы развития научно-технического прогресса. Обучение физике вносит вклад в политехническую подготовку путем ознакомления учащихся с главными направлениями научно-технического прогресса, физическими основами работы приборов, технических устройств, технологических установок.

В задачи обучения физике входит:

— развитие мышления учащихся, формирование у них умений самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;

— овладение школьными знаниями об экспериментальных фактах, понятиях, законах, теориях, методах физической науки; о современной научной картине мира; о широких возможностях применения физических законов в технике и технологии;

— усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании, диалектического, характера физических явлений и законов;

— формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения; подготовка к продолжению образования и сознательному выбору профессии.

При изучении физических теорий, мировоззренческой интерпретации законов формируются знания учащихся о современной научной картине мира. Воспитанию учащихся служат сведения о перспективах развития физики и техники, о роли физики в ускорении научно-технического прогресса.

Данная рабочая программа, тематического и поурочного планирования изучения физики в 10 -11 общеобразовательных классах составлена на основе программы Г.Я. Мякишева для общеобразовательных учреждений. Изучение учебного материала предполагает использование учебника Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. «Физика-10», Мякишев Г.Я., Буховцев Б.Б. «Физика 11».


Изучение физики связано с изучением математики, химии, биологии.

Знания материала по физике атомного ядра формируются с использованием знаний о периодической системе элементов Д. И. Менделеева, изотопах и составе атомных ядер (химия); о мутационном воздействии ионизирующей радиации (биология).

Базовый уровень изучения физики ориентирован на формирование общей культуры и в большей степени связан с мировоззренческими, воспитательными и развивающими задачами общего образования, задачами социализации.

Рабочая программа и поурочное планирование включает в себя основные вопросы курса физики 10 - 11 классов предусмотренных соответствующими разделами Государственного образовательного стандарта по физике.


Основной материал включен в каждый раздел курса, требует глубокого и прочного усвоения, которое следует добиваться, не загружая память учащихся множеством частых фактов. Таким основным материалом являются для всего курса физики законы сохранения (энергии, импульса, электрического заряда); для механики — идеи относительности движения, основные понятия кинематики, законы Ньютона; для молекулярной физики — основные положения молекулярно-кинетической теории, основное уравнение молекулярно-кинетической теории идеального газа, первый закон термодинамики; для электродинамики — учение об электрическом поле, электронная теория, закон Кулон, Ома и Ампера, явление электромагнитной индукции; для квантово физики — квантовые свойства сета, квантовые постулаты Бора, закон взаимосвязи массы и энергии. В основной материал также входят важнейшие следствия из законов и теорий, их практическое применение. Изучение физических теорий, мировоззренческая интерпретация законов формируют знания учащихся о современной научной картине мира.

Изучение школьного курса физики должно отражать теоретико-познавательные аспекты учебного материла — границы применимости физических теорий и соотношения между теориями различной степени общности, роль опыта в физике как источника знаний и критерия правильности теорий. Воспитанию учащихся служат сведения о перспективах развития физики и техники, о роли физики в ускорении научно-технического прогресса, из истории развития науки (молекулярно-кинетической теории, учения о полях, взглядов на природу света и строение вещества).

Наглядность преподавания физики и создание условий наилучшего понимания учащимися физической сущности изучаемого материала возможно через применение демонстрационного эксперимента. Перечень демонстраций необходимых для организации наглядности учебного процесса по каждому разделу указан в программе. У большинства учащихся дома в личном пользовании имеют компьютеры, что дает возможность расширять понятийную базу знаний учащихся по различным разделам курса физики. Использование обучающих программ расположенных в образовательных Интернет-сайтах или использование CD – дисков с обучающими программами («Живая физика», «Открытая физика» и др.) создает условия для формирования умений проводить виртуальный физический эксперимент.

В программе предусмотрено выполнение семи лабораторных работ и одиннадцати контрольных работ по основным разделам курса физики 10 - 11 классов. Текущий контроль ЗУН учащихся рекомендуется проводить по дидактическим материалам, рекомендованным министерством просвещения РФ в соответствии с образовательным стандартом. Практические задания, указанные в планировании рекомендуются для формирования у учащихся умений применять знания для решения задач, и подготовки учащихся к сдаче базового уровня ЕГЭ по физике.

Прямым шрифтом указан материал, сформулированный в образовательном стандарте подлежащий обязательному изучению и контролю знаний учащихся. В квадратных скобках указан материал, сформулированный в образовательном стандарте (уровень общего образования) который подлежит изучению, но не является обязательным для контроля и не включается в требования к уровню подготовки выпускников. Курсивом указан материал рекомендованный Г. Я. Мякишевым. С нашей точки зрения изучение этого материала является обязательным для изучения и контроля знаний учащихся в рамках решения задачи поставленной нами при использовании данной программы в учебном процессе.

Рекомендации к методике преподавания

В процессе преподавания важно научить школьников применять основные положения науки для самостоятельного объяснения физических явлений, результатов эксперимента, действия приборов и установок. Выделение основного материала в каждом разделе курса физики помогает учителю обратить внимание учащихся на те вопросы, которые они должны глубоко и прочно усвоить. Физический эксперимент является органической частью школьного курса физики, важным методом обучения.

Решение основных учебно-воспитательных задач достигается на уроках сочетанием разнообразных форм и методов обучения. Большое значение придается самостоятельной работе учащихся: повторению и закреплению основного теоретического материала; выполнению фронтальных лабораторных работ; изучению некоторых практических приложений физики, когда теория вопроса уже усвоена; применению знаний в процессе решения задач; обобщению и систематизации знаний.

Следует уделять больше внимания на уроке работе учащихся с книгой: учебником, справочной литературой, книгой для чтения, хрестоматией и т. п. При работе с учебником необходимо формировать умение выделять в тексте основной материал, видеть и понимать логические связи внутри материала, объяснять изучаемые явления и процессы.

Рекомендуется проведение семинаров обобщающего характера, например по таким темам: законы сохранения импульса и энергии и их применение; применение электрического тока в промышленности и сельском хозяйстве.

Решение физических задач должно проводиться в оптимальном сочетании с другими методами обучения. Из-за сокращения времени на изучение физики особое значение приобретают задачи, в решении которых используется несколько закономерностей; решение задач проводится, как правило, сначала в общем виде. При решении задач требующих применение нескольких законов, учитель показывает образец решения таких задач и предлагает подобные задачи для домашнего решения. Для учащихся испытывающих затруднение в решении указанных задач организуются индивидуальные консультации.

Основной учебный материал должен быть усвоен учащимися на уроке. Это требует от учителя постоянного продумывания методики проведения урока: изложение нового материала в форме бесед или лекций, выдвижение учебных проблем; широкое использование учебного эксперимента (демонстрационные опыты, фронтальные лабораторные работы, в том числе и кратковременные), самостоятельная работа учащихся. Необходимо совершенствовать методы повторения и контроля знаний учащихся, с тем, чтобы основное время урока было посвящено объяснению и закреплению нового материала. Наиболее эффективным методом проверки и коррекции знаний, учащихся при проведении промежуточной диагностики внутри изучаемого раздела является использование кратковременных (на 7-8 минут) тестовых тематических заданий. Итоговые контрольные работы проводятся в конце изучения соответствующего раздела. Все это способствует решению ключевой проблемы — повышению эффективности урока физики.


Таблица 1: Учебно-тематический план 10 класс



п/п

Тема

Количество часов

В том числе

уроки

лабораторные

занятия

контрольные работы

1

Введение

1

1







2

Кинематика

9

8




1

3

Динамика

14

12

1

1

4

Основы молекулярно-кинетической тео­рии

14

13




1

5

Основы термоди­намики

6

5




1

6

Электростатика

10

9




1

7

Законы постоян­ного тока

8

5

2

1

8

Электрический ток в различных средах

6

6







10

Итого

68

59

3

6


Таблица 2: Учебно-тематический план 11 класс



п/п

Тема

Количество часов

В том числе

уроки

лабораторные работы

контрольные работы

1.

Магнитное поле

5

5







2.

Электромагнитная индукция

7

5

1

1

3.

Электромагнитные колебания и волны

10

10







4.

Оптика

15

12

2

1

5.

Квантовая физика

17

14

1

2

6.

Строение Вселенной.

7

7







7.

Повторение.

7

6




1




Всего часов

68

59

4

5



Программа

10 класс. Содержание учебного материала.

(68 часов, 2 часа в неделю)

Физика и методы научного познания. (1час)

Что изучает физика. Физические явления. Наблюдения и опыт. Научное мировоззрение.

Кинематика (9 часов)

Механическое движение, виды движений, его характеристики. Равномерное движение тел. Скорость. Уравнение равномерного движения. Графики прямолинейного движения. Скорость при неравномерном движении. Прямолинейное равноускоренное движение. Движение тел. Поступательное движение. Материальная точка.

Демонстрации:

  1. Относительность движения.

  2. Прямолинейное и криволинейное движение.

  3. Запись равномерного и равноускоренного движения.

  4. Падение тел в воздухе и безвоздушном пространстве (трубки Ньютона)

  5. Направление скорости при движении тела по окружности.


Знать: понятия: материальная точка, относительность механического движения, путь, перемещение, мгновенная скорость, ускорение, амплитуда, период, частота колебаний.

Уметь: пользоваться секундомером. Измерять и вычислять физические величины (время, расстояние, скорость, ускорение). Читать и строить графики, выражающие зависимость кинематических величин от времени, при равномерном и равноускоренном движениях. Решать простейшие задачи на определение скорости, ускорения, пути и перемещения при равноускоренном движении, скорости и ускорения при движении тела по окружности с постоянной по модулю скоростью. Изображать на чертеже при решении задач направления векторов скорости, ускорения. Рассчитывать тормозной путь. Оценивать и анализировать информацию по теме «Кинематика» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.


Динамика (14 часов)

Взаимодействие тел в природе. Явление инерции. I закон Ньютона. Инерциальные системы отсчета. Понятие силы – как меры взаимодействия тел. II закон Ньютона. III закон Ньютона. Принцип относительности Галилея. Явление тяготения. Гравитационные силы. Закон всемирного тяготения. Первая космическая скорость. Вес тела. Невесомость и перегрузки. Деформация и сила упругости. Закон Гука. Силы трения. Импульс тела и импульс силы. Закон сохранения импульса. Реактивное движение. Работа силы. Механическая энергия тела (потенциальная и кинетическая). Закон сохранения и превращения энергии в механики.

Лабораторная работа №1 «Изучение закона сохранения механической энергии».

Демонстрации:

  1. Проявление инерции.

  2. Сравнение массы тел.

  3. Второй закон Ньютона

  4. Третий закон Ньютона

  5. Вес тела при ускоренном подъеме и падении тела.

  6. Невесомость.

  7. Зависимость силы упругости от величины деформации.

  8. Силы трения покоя, скольжения и качения.

  9. Закон сохранения импульса.

  10. Реактивное движение.

  11. Изменение энергии тела при совершении работы.

  12. Переход потенциальной энергии тела в кинетическую.

Знать: понятия: масса, сила (сила тяжести, сила трения, сила упругости), вес, невесомость, импульс, инерциальная система отсчета, работа силы, потенциальная и кинетическая энергия,

Законы и принципы: Законы Ньютона, принцип относительности Галилея, закон всемирного тяготения, закон Гука, зависимость силы трения скольжения от силы давления, закон сохранения импульса, закон сохранения и превращения энергии.

Практическое применение: движение искусственных спутников под действием силы тяжести, реактивное движение, устройство ракеты, КПД машин и механизмов.

Уметь: измерять и вычислять физические величины (массу, силу, жесткость, коэффициент трения, импульс, работу, мощность, КПД механизмов,). Читать и строить графики, выражающие зависимость силы упругости от деформации. Решать простейшие задачи на определение массы, силы, импульса, работы, мощности, энергии, КПД. Изображать на чертеже при решении задач направления векторов ускорения, силы, импульса тела. Рассчитывать силы, действующие на летчика, выводящего самолет из пикирования, и на движущийся автомобиль в верхней точке выпуклого моста; определять скорость ракеты, вагона при автосцепке с использованием закона сохранения импульса, а также скорость тела при свободном падении с использованием закона сохранения механической энергии. Оценивать и анализировать информацию по теме «Динамика» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.


Основы молекулярно-кинетической тео­рии (14 часов)

Строение вещества. Молекула. Основные положения молекулярно-кинетической теории строения вещества. Экспериментальное доказательство основных положений теории. Броуновское движение. Масса молекул. Количество вещества. Строение газообразных, жидких и твердых тел. Идеальный газ в молекулярно-кинетической теории. Среднее значение квадрата скорости молекул. Основное уравнение молекулярно-кинетической теории. Температура и тепловое равновесие. Абсолютная температура. Температура - мера средней кинетической энергии. Измерение скорости молекул. Основные макропараметры газа. Уравнение состояния иде­ального газа. Газовые законы. Зависимость давления насыщенного пара от температуры. Кипение. Влажность воздуха и ее измерение. Кристалличе­ские и аморфные тела.

Демонстрации:

  1. Опыты, доказывающие основные положения МКТ.

  2. Механическую модель броуновского движения.

  3. Взаимосвязь между температурой, давлением и объемом для данной массы газа.

  4. Изотермический процесс.

  5. Изобарный процесс.

  6. Изохорный процесс.

  7. Свойства насыщенных паров.

  8. Кипение воды при пониженном давлении.

  9. Устройство принцип действия психрометра.

  10. Конденсационный гигрометр, волосной гигрометр.

  11. Модели кристаллических решеток.

  12. Рост кристаллов.


Знать: понятия: тепловое движение частиц; массы и размеры молекул; идеальный газ; изотермический, изохорный, изобарный и адиабатный процессы; броуновское движение; температура (мера средней кинетической энергии молекул); насыщенные и ненасыщенные пары; влажность воздуха; анизотропии монокристаллов, кристаллические и аморфные тела; упругие и пластические деформации.

Законы и формулы: основное уравнение молекулярно-кинетической теории, уравнение Менделеева — Клапейрона, связь между параметрами состояния газа в изопроцессах.

Практическое применение: использование кристаллов и других материалов
и технике.

Уметь: решать задачи на расчет количества вещества, молярной массы, с использованием основного уравнения молекулярно-кинетической теории газов, уравнения Менделеева – Клайперона, связи средней кинетической энергии хаотического движения молекул и температуры. Читать и строить графики зависимости между основными параметрами состояния газа. Пользоваться психрометром; определять экспериментально параметры состояния газа. Оценивать и анализировать информацию по теме «Основы молекулярно-кинетической теории» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

Основы термоди­намики (6 часов)
Внутренняя энергия. Работа в термодинамике. Количество теплоты. Удельная теплоемкость. Первый закон термодинамики. [Порядок и хаос. Необратимость тепловых процессов.] Принципы действия теплового двигателя. ДВС. Дизель. КПД тепловых двигателей.

Демонстрации:

    1. Сравнение удельной теплоемкости двух различных жидкостей.

    2. Изменение внутренней энергии тела при теплопередаче и совершении работы.

    3. Изменение температуры воздуха при адиабатном расширении и сжатии.

    4. Принцип действия тепловой машины.


Знать: понятия: внутренняя энергия, работа в термодинамике, количество теплоты. удельная теплоемкость необратимость тепловых процессов, тепловые двигатели.

Законы и формулы: первый закон термодинамики.

Практическое применение: тепловых двигателей на транспорте, в энергетике
и сельском хозяйстве; методы профилактики и борьбы с загрязнением окружающей среды.

Уметь: решать задачи на применение первого закона термодинамики, на расчет работы газа в изобарном процессе, КПД тепловых двигателей. Вычислять, работу газа с помощью графика зависимости давления от объема. Оценивать и анализировать информацию по теме «Основы термодинамики» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

  1   2   3   4   5

Похожие:

Образовательная программа по предмету «Физика» iconОбразовательная программа по предмету информатика
Составитель: Липатова Зубарзят Масгутовна (математика и физика, первая кв категория)
Образовательная программа по предмету «Физика» iconОсновная образовательная программа высшего профессионального образования Направление подготовки 011200 физика
Список профилей подготовки бакалавров по направлению физика Фундаментальная физика
Образовательная программа по предмету «Физика» iconОсновная образовательная программа высшего профессионального образования Направление подготовки 011200 физика
Список профилей подготовки бакалавров по направлению физика Фундаментальная физика
Образовательная программа по предмету «Физика» iconОбразовательная программа по предмету физика
Российской Федера­ции отводит 170 часов для обязательного изучения физики на базовом уровне ступени среднего (пол­ного) общего образования...
Образовательная программа по предмету «Физика» iconРабочая программа по предмету «Физика» для учащихся 7-х классов. Пояснительная записка
Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики,...
Образовательная программа по предмету «Физика» iconРабочая программа по предмету «Физика»
Программа составлена на основе «Стандарта основного общего образования по физике», «Примерной программы основного общего образования...
Образовательная программа по предмету «Физика» iconРабочая программа по предмету информатика
Составитель: Липатова Зубарзят Масгутовна (математика и физика, первая кв категория)
Образовательная программа по предмету «Физика» iconКлассическая теория теплоемкости идеального газа. Литератур а к курсу лекций. А. Программа молекулярная физика
А. Программа молекулярная физика. (Рабочая программа курса "Общая физика". Aннотированная. 2002 / 03 уч г. Часть )
Образовательная программа по предмету «Физика» iconОбразовательная программа по предмету пластилинография
Основные приемы рисования
Образовательная программа по предмету «Физика» iconЛекция 01. Литератур а к курсу лекций. А. Программа молекулярная физика
А. Программа молекулярная физика. (Рабочая программа курса "Общая физика". Aннотированная. 2002 / 03 уч г. Часть )
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница