Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов




НазваниеОбоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов
страница1/5
Дата12.01.2013
Размер0.66 Mb.
ТипАвтореферат
  1   2   3   4   5




На правах рукописи




Прокопов Альберт Юрьевич


ОБОСНОВАНИЕ ТЕХНОЛОГИЧЕСКИХ И КОНСТРУКТИВНЫХ
РЕШЕНИЙ ПО АРМИРОВАНИЮ ГЛУБОКИХ ВЕРТИКАЛЬНЫХ СТВОЛОВ




Специальность:

25.00.22 – «Геотехнология (подземная, открытая и строительная)»







Автореферат

диссертации на соискание ученой степени

доктора технических наук


Новочеркасск – 2009

Работа выполнена в Шахтинском институте (филиале) Государственного образовательного учреждения высшего профессионального образования «Южно-Российский государственный технический университет (Новочеркасский политехнический институт)» на кафедре «Подземное, промышленное гражданское строительство и строительные материалы».


Научный консультант доктор технических наук, профессор

Ягодкин Феликс Игнатьевич


Официальные оппоненты доктор технических наук, профессор

Кузнецов Юрий Николаевич

доктор технических наук, профессор,

Заслуженный деятель науки и техники РФ

Булычев Николай Спиридонович

доктор технических наук, профессор,

Заслуженный деятель науки РФ

Голик Владимир Иванович


Ведущая организация ФГУП «ВНИПИПромтехнологии»

г. Москва


Защита состоится 27 февраля 2009 г. в 1000 часов на заседании диссертационного совета Д-212.304.07 при Южно-Российском государственном техническом университете (Новочеркасском политехническом институте) по адресу 346428, г. Новочеркасск, ул. Просвещения, 132, ЮРГТУ(НПИ), аудитория 107. тел.\факс :(863-52) 2-84-63, e-mail : ngtu@novoch.ru.


С диссертацией можно ознакомится в библиотеке ЮРГТУ(НПИ) (г. Новочеркасск, ул. Просвещения, 132)


Автореферат разослан «_____»_____________2009 г.





Ученый секретарь

д


иссертационного совета Колесниченко Евгений Александрович


ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ


Актуальность работы. «Энергетической стратегией Российской Федерации до 2020 г.» предусмотрен рост добычи угля до 430 млн. т в год. Это невозможно без строительства новых и реконструкции действующих угольных шахт. Введение в эксплуатацию новых производственных мощностей связано с увеличением глубины разработки и ухудшением горно-геологических условий, что в свою очередь сказывается на технологии сооружения, способах поддержания вертикальных стволов, а также степени воздействия неблагоприятных факторов на крепь и жесткую армировку.

Армировка оказывает существенное влияние на определение диаметра ствола, его стоимости, сроков строительства, а также на производительность, надежность и экономичность работы подъемных установок. Еще большую актуальность приобретает задача выбора рациональных схем и конструкций армировки стволов, пройденных в сложных горно- и гидрогеологических условиях и до больших глубин. В этом случае крепь и армировка воспринимают значительные и изменяющиеся во времени климатические, физико-химические воздействия, а также нагрузки со стороны породного массива, что должно учитываться как при проектировании строительства, так и при эксплуатации ствола.

При увеличении глубины разработки для сохранения и повышения производственной мощности шахты необходимо увеличивать интенсивность подъема, т.е. повышать скорость движения и грузоподъемность скипов. В настоящее время в России эксплуатируются подъемы со скоростью движения скипов до 12-14 м/с и концевой нагрузкой до 60 т. Специалистами прогнозируется рост скоростей до 20 м/с и масс груженых скипов до 100 т, при этом интенсивность подъема увеличится до 40 МДж, т.е. в 3,5 – 4,5 раза. Это приведет к существенному увеличению как основных, так и ряда дополнительных нагрузок на жесткую армировку, что потребует новых подходов в принятии конструктивных и технологических решений по армированию стволов.

Проведенный анализ состояния вертикальных стволов шахт Российского и Украинского Донбасса свидетельствует о том, что более 70% глубоких стволов, эксплуатируемых в сложных горно- и гидрогеологических условиях, имеют существенные нарушения крепи и жесткой армировки.

При эксплуатации высокоинтенсивных подъемов в сложных условиях и на больших глубинах затраты на ремонт и замену жесткой армировки составляют 30-40% от стоимости сооружения ствола (без учета потерь от снижения производственной мощности шахты в этот период). Поэтому одним из направлений снижения затрат на строительство и эксплуатацию глубоких шахтных стволов является применение усовершенствованных конструкций или принципиально новых технических решений по армированию, принимаемых с учетом ряда дополнительных нагрузок и воздействий. Это позволит выбирать рациональные схемы армировки; предусматривать конструкции, максимально адаптированные к конкретным условиям эксплуатации и обеспечивающие при необходимости податливость или регулируемость положения расстрелов, антикоррозийную защиту армировки, защиту от экстремальных температурных нагрузок (сезонных перепадов температур); учитывать прогнозируемые технологические отклонения крепи от проектного положения, увеличивающиеся с глубиной, и др.

Комплекс выполненных автором исследований посвящен совершенствованию методики расчета и конструирования жесткой армировки глубоких вертикальных стволов с высокой интенсивностью подъема путем комплексного учета основных и дополнительных нагрузок и воздействий в системе «подъемный сосуд – армировка – ствол».

Диссертационная работа подготовлена на основе обобщения результатов исследований, выполненных в рамках госбюджетной научно-исследователь­ской работы ГР 0120105855 по теме П 53-801 «Разработать средства и способы крепления и охраны горных выработок и обеспечения безопасности труда на горных и строящихся предприятиях», фундаментальной НИР №17.05 по Единому заказ-наряду Федерального агентства по образованию «Исследование геомеханических процессов подземного пространства, влияние этих процессов на сопутствующие среды и земную поверхность», НИР по хоз. договору №89 «Определение параметров монолитной бетонной крепи и жесткой армировки ствола «Северо-Восточный» ОАО «Дарасунский рудник» (с НТЦ «Наука и практика»), НИР по хоз. договору «Исследование нагрузок на жесткую армировку скипового ствола рудника «Узельгинский» ОАО «Учалинский ГОК» (с НТЦ «Наука и практика»), НИР «Исследование коррозионных процессов в элементах армировки шахтных стволов», выполненной на основании договоров о международном сотрудничестве между Шахтинским институтом ЮРГТУ(НПИ), Национальным горным университетом (г. Днепропетровск, Украина) и Донецким национальным техническим университетом (г. Донецк, Украина).

Целью работы является обоснование конструктивных и технологических решений по армированию глубоких вертикальных стволов, обеспечивающих снижение затрат при их сооружении и эксплуатации, на основе выявленных закономерностей функционирования системы «подъемный сосуд – армировка – ствол».

Идея работы заключается в комплексном учете особенностей функционирования системы «подъемный сосуд – армировка – ствол» на больших глубинах и при высокой интенсивности подъема для минимизации отрицательных воздействий внешней среды и нагрузок на жесткую армировку посредством рационализации конструктивных и технологических решений по армированию стволов на стадиях проектирования и сооружения.

Методы исследования. В работе использован комплексный метод исследований, включающий системный анализ современного состояния вопросов проектирования и эксплуатации армировки вертикальных стволов, натурные наблюдения за состоянием крепи и армировки и сезонными изменениями климатических параметров шахтных стволов, экспериментальные исследования скорости коррозии в элементах армировки методом ускоренных коррозионных испытаний, статистический анализ, математическое моделирование напряжённо-деформированного состояния армировки с использованием современных программно-вычислительных комплексов, методы теоретической механики и физики, технико-экономический анализ, опытно-промышленную проверку результатов исследований.

Научные положения, выносимые на защиту:

1. Конструктивные и технологические параметры жесткой армировки глубоких вертикальных стволов определяются закономерностями функционирования системы «подъемный сосуд – армировка – ствол», основанными как на динамическом взаимодействии сосудов и жесткой армировки, так и на воздействиях внешней среды, обусловленных горно-геологическими, физико-хими­ческими и климатическими факторами.

2. С увеличением интенсивности подъема в глубоких стволах возрастают дополнительные лобовые и боковые эксплуатационные нагрузки на жесткую армировку, действующие в горизонтальной плоскости и возникающие вследствие действия кориолисовой силы инерции, аэродинамических сил в местах встречи подъемных сосудов, кручения подъемных канатов, неточности стыков проводников, эксцентриситета загрузки подъемных сосудов и их допустимого отклонения от вертикали, учет которых влияет на конструирование армировки.

3. Направляющие устройства подъемных сосудов, конструктивные и технологические параметры жесткой армировки выбираются с учетом диссипативных сил, действующих на проводники в вертикальной плоскости, при этом силы трения скольжения (качения) являются линейной функцией интенсивности подъема.

4. Технологические и эксплуатационные параметры армировки глубоких вертикальных стволов (глубина заделки расстрела (консоли) в крепь, величина продольной регулируемости или податливости расстрела, параметры анкерных узлов крепления и др.) определяются с учетом прогнозируемого радиального отклонения крепи ствола от проектного положения, обусловленного горно-геологическими и технологическими факторами и нелинейно зависящего от глубины и диаметра ствола.

5. Конструктивные и технологические параметры жесткой армировки воздухоподающих стволов с анкерным креплением расстрелов (количество, диаметр и длина анкеров, типоразмер профилей расстрелов, зазоры на стыках проводников, наличие узлов податливости, схема армировки и др.) определяются с учетом температурных климатических воздействий, максимальная глубина влияния которых определяется схемой яруса и конструкцией узла крепления расстрелов и колеблется от 100 до 800 м.

6. Оценка долговечности жесткой армировки и выбор антикоррозийных покрытий производятся на основе расчета скорости коррозии профилей, которая определяется в зависимости от минерализации шахтных вод и скорости вентиляционной струи, с помощью уравнения поверхности 2-го порядка общего вида, с учетом напряжений, действующих в элементах армировки.

7. Учет горно-геологических воздействий на армировку осуществляется для глубоких стволов, эксплуатируемых в породах II категории устойчивости и выше, путем введения поправочного коэффициента к расчетному эквивалентному напряжению в элементах армировки, зависящего от глубины ствола, шага армировки, скорости и массы подъемного сосуда.

Обоснованность и достоверность научных положений, выводов и рекомендаций подтверждается статистическим анализом большого массива фактических маркшейдерских данных по 74 стволам, обработанных на ЭВМ с использованием апробированных методов математической статистики; натурными наблюдениями за климатическими характеристиками стволов, проводившимися в течение 10 лет на 16 стволах Российского и 8 стволах Украинского Донбасса; лабораторными исследованиями коррозионных процессов с использованием апробированного метода ускоренных коррозионных испытаний и их удовлетворительной сходимостью с фактическими данными о коррозионном износе эксплуатируемой армировки стволов; конечно-элементным анализом напряженно-деформированного состояния армировки с использованием апробированного программно-вычислительного комплекса «ЛИРА-Windows» 9.2; актами внедрения разработанной методики в проектирование армировки 4 вертикальных стволов и результатами опытной проверки предложенных технических решений на 7 натурных объектах.

Научная новизна работы заключается в следующем:

1. Получены новые уравнения для расчета дополнительных лобовых и боковых нагрузок на армировку: вследствие действия на сосуды кориолисовой силы инерции; аэродинамических сил, возникающих в местах встречи подъемных сосудов; сил вследствие крутящего момента, возникающего в канате под действием растягивающей нагрузки; вследствие одновременных эксцентриситета загрузки и допустимого отклонения подъемных сосудов от вертикали; вследствие неточности стыков проводников; диссипативных сил, действующих на проводники в вертикальной плоскости.

2. Разработан алгоритм и усовершенствованная методика расчета горизонтальных нагрузок на армировку на основе определения по номограммам коэффициентов к основным эксплуатационным (лобовой и боковой) нагрузкам), отличающаяся учетом специфики условий функционирования глубокого вертикального ствола.

3. Определены условия, при которых обязателен учет ряда второстепенных горизонтальных нагрузок на армировку, к которым относятся нагрузки, вследствие действия на сосуды кориолисовой силы инерции; силы вследствие кручения подъемных канатов; силы, возникающие вследствие неточности стыков проводников.

4. Получены новые зависимости вертикальных диссипативных сил на армировку от интенсивности подъема, угла отклонения проводников от вертикали и величины выступа на стыках проводников.

5. На основании результатов статистической обработки маркшейдерских замеров геометрических параметров сечений стволов получены зависимости средних и максимальных радиальных отклонений стенок ствола от проектного положения от глубины и диаметра стволов, используемые для определения конструктивных параметров узлов крепления расстрелов и консолей.

6. На основании натурных наблюдений на шахтах Российского и Украинского Донбасса исследованы температурные климатические воздействия на армировку и получены зависимости годовых амплитуд температуры воздуха от глубины ствола при нормальном и экстремальном тепловых режимах эксплуатации воздухоподающих стволов.

7. На основании лабораторных испытаний установлены факторы, влияющие на развитие коррозионных процессов в элементах армировки, и получены новые зависимости скорости коррозии от минерализации шахтных вод, скорости вентиляционной струи и напряжений в конструкциях.

8. На основании численного моделирования определены параметры напряженно-деформированного состояния армировки, возникающего вследствие совместного влияния эксплуатационных нагрузок и горно-геологических воздействий со стороны вмещающего породного массива.

Научное значение работы заключается в разработке методической базы обоснования конструктивных и технологических решений по армированию глубоких вертикальных стволов с высокой интенсивностью подъема с учетом закономерностей формирования дополнительных эксплуатационных нагрузок и специфики условий функционирования горнотехнического сооружения.

Практическое значение работы заключается в разработке:

– алгоритма и усовершенствованной методики расчета горизонтальных и вертикальных нагрузок на армировку с учетом специфики условий эксплуатации глубоких вертикальных стволов с высокой интенсивностью подъема;

– рекомендаций по проектированию параметров заделки (крепления анкерами) расстрелов с учетом ожидаемых радиальных отклонений стенок ствола вследствие горно-геологических и технологических факторов;

– мер защиты элементов жёсткой армировки вертикальных стволов от отрицательного влияния климатических воздействий;

– новых конструкций армировки для эксплуатации в сложных горно-геологических условиях (Патент №2247246 РФ) и для глубоких стволов с высокой интенсивностью подъема (Патент №2232274 РФ);

– методики оценки скорости коррозионного износа и выбора средств антикоррозионной защиты;

– технологий армирования вертикальных стволов с использованием разработанных схем и конструкций армировки.

Реализация выводов и рекомендаций работы. Результаты исследований были использованы НТЦ «Наука и практика» и Шахтинским институтом ЮРГТУ(НПИ) при разработке следующих проектов:

– рабочей документации жесткой армировки вспомогательного и вентиляционного стволов шахты «Обуховская №1» в части определения параметров анкерного крепления расстрелов;

– рабочей документации армирования вспомогательного ствола №4 шахты «Гуковская» в части определения основных параметров комбинированной (расстрельной и безрасстрельной) жесткой армировки стволов с креплением анкерами;

– рабочей документации жесткой армировки клетевого ствола «Северо-Восточный» рудника «Дарасунский» в части проектирования параметров жесткой армировки с учетом температурных воздействий и разработки технологии крепления расстрелов в бетонной крепи стволов, позволяющей компенсировать температурные напряжения и деформации в анкерных узлах крепления;

– проекта реконструкции скипового ствола рудника «Ново-Широкин­ский» УК «Русдрагмет» в части разработки технологии замены проводников;

– проекта замены армировки в скиповом стволе рудника «Узельгинский» ОАО «Учалинский ГОК» в части расчета основных и дополнительных нагрузок на армировку и разработки технологии переармирования с использованием действующих подъемных сосудов;

– проекта армирования вентиляционной скважины ООО «Сафьяновская медь – Медин» в части расчета нагрузок на армировку и разработки технологии армирования скважины с использованием регулируемых узлов крепления расстрелов.

Результаты исследований использовались ОАО «Ростовшахтострой» при армировании скипового ствола подземного рудника «Мир» АК «Алроса».

Результаты исследований внедрены в учебный процесс для подготовки горных инженеров по специальности 130406 при изучении курсов «Аэрология подземных сооружений», «Шахтное и подземное строительство. Вертикальные стволы» и «Программирование и расчеты на ЭВМ в шахтном строительстве» и специальности 130404 при изучении курса «Строительство и реконструкция горных предприятий».

Апробация работы. Содержание и отдельные положения диссертации обсуждены и одобрены на Международных научных симпозиумах «Неделя горняка» (г. Москва, МГГУ, 2002 – 2008 гг.), Международных конференциях «Форум горняков – 2006» и «Форум горняков – 2007» (НГУ, г. Днепропетровск, Украина, 2006 и 2007 гг.); Китайской международной конференции по обмену специалистами и выставке научных достижений (г. Шэньян, Китай, 2006 г.); Международных научно-практических конференциях «Совершенствование технологии строительства шахт и подземных сооружений» (ДонНТУ, г. Донецк, Украина, 2002, 2004 – 2008 гг.); Международной научно-практической конференции «Уголь – Mining Technologies 2003» (ДГМИ, г. Алчевск, Украина, 2003); Второй международной конференции «Социально-экономические и экологические проблемы горной промышленности строительства и энергетики» (г. Тула, ТулГУ, 2005); Международных научно-технических конференциях «Техника и технология разработки месторождений полезных ископаемых» (г. Новокузнецк, СибГИУ, 2005 и 2006 гг.); 40 – 53-й региональных, I и II Международных научно-практических конференциях «Перспективы развития Восточного Донбасса» (ШИ(ф) ЮРГТУ(НПИ), г. Шахты, 1995 – 2008 гг.); Всероссийской научно-практической конференции компании «Росуголь» «Пути повышения эффективности технологии строительства вертикальных стволов» (г. Шахты, 1996 г.), научно-производственной конференции компании «Росуголь» и АО «Ростовшахтострой» «Прохождение вертикальных стволов, околоствольных дворов, горизонтальных и наклонных выработок при строительстве новых шахт» (г. Шахты, 1997 г.); Международной научной конференции «Перспективы развития горных технологий в начале третьего тысячелетия» (ДГМИ, г. Алчевск, Украина, 1999), Всероссийской выставке-ярмарке научно-исследовательских работ и инновационной деятельности «ИННОВ-2003» (г. Новочеркасск, ЮРГТУ (НПИ), 2003 г.); Всероссийском инновационном форуме «ИННОВ-2005» (г. Новочеркасск, 2005 г.), региональной научно-практической школе-семинаре «Прогрессивные технологии строительства, безопасности и реструктуризации горных предприятий» (Донецкое отделение Академии строительства Украины, г. Донецк, 2005 г.), Международной научно-практической конференции «Проблемы подземного строительства и направления развития тампонажа и закрепления горных пород» (АФ ВНУ им. В. Даля, г. Антрацит, Украина, 2006 г.); Международной научно-практической конференции «Перспективы освоения подземного пространства» (НГУ, г. Днепропетровск, Украина, 2007 г.); Международной научной конференции «Устойчивое развитие горнорудной промышленности» (КТУ, г. Кривой Рог, Украина, 2007 г.); Международных научных чтениях по проблемам горного дела и экологии горного производства (АФ ВНУ им. В.Даля, г. Антрацит, Украина, 2007 г.); Выставке-ярмарке, посвященной 100-летию ЮРГТУ(НПИ) (г. Новочеркасск, 2007 г.); Международной научно-практической конференции «Мосты и туннели: теория, исследования, практика» (ДНУЖТ им. акад. В. Лазаряна (ДИИТ), г. Днепропетровск, Украина 2007 г.); Международной научно-практической школе-семинаре «Прогрессивные технологии строительства, реконструкции, реструктуризации и безопасности в капитальном строительстве предприятий угольной промышленности» (ОАО ГХК «Донбассшахтострой», Донецкое отделение Академии Строительства Украины, г. Донецк, 2007 г.); научных семинарах кафедры «Строительство подземных сооружений и шахт» ТулГУ, кафедры «Подземное, промышленное, гражданское строительство и строительные материалы» ШИ ЮРГТУ(НПИ); заседаниях технических советов НТЦ «Наука и практика» (г. Ростов-на-Дону), ОАО «Ростовшахтострой» (г. Шахты) и ОАО «Ростовгипрошахт» (г. Ростов-на-Дону).

Инновационная научно-техническая разработка «Ремонтопригодный узел крепления армировки шахтного ствола» (авторы Прокопов А.Ю., Сильченко Ю.А., Саакян Р.О.) удостоена Грамоты Всероссийской выставки-ярмарки «ИННОВ-2003».

Инновационная научно-техническая разработка «Ресурсосберегающая технология армирования глубоких вертикальных стволов» (авторы Прокопов А.Ю., Саакян Р.О.) удостоена Диплома II-го Всероссийского инновационного форума «ИННОВ-2005».

Разработка «Защита крепи и армировки вертикальных стволов, эксплуатирующихся в сложных горно-геологических условиях» (авторы Страданченко С.Г., Прокопов А.Ю.) удостоена Серебряной медали Китайской международной выставки научных достижений (г. Шэньян, КНР, 2006 г.).

Публикации. По теме диссертации опубликовано 97 научных работ, в том числе 4 монографии, 2 патента, 91 научная статья, в т.ч. 25 – в изданиях, рекомендованных ВАК РФ, 28 – за рубежом.

Структура и объем работы. Диссертационная работа состоит из введения, 7 глав и заключения, изложенных на 345 страницах машинописного текста, содержит 174 рисунка, 52 таблицы, список использованной литературы из 361 наименования и 22 приложений, включающих основные расчетные таблицы, результаты исследований, акты внедрения, копии грамот, дипломов, медали.

Автор выражает искреннюю благодарность д-ру техн. наук, проф. Ягодкину Ф.И. за ценные консультации и помощь при работе над диссертацией,
д-ру техн. наук, проф. Страданченко С.Г. за всестороннее содействие и поддержку, а также всем соавторам совместных исследований.

  1   2   3   4   5

Похожие:

Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов iconОбоснование эффективной технологии крепления глубоких вертикальных стволов в сложных горно-геологических условиях
Государственного образовательного учреждения высшего профессионального образования «Южно-Российский государственный технический университет...
Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов iconРазработка и совершенствование технологических решений по повышению эксплуатационных показателей горизонтальных скважин и боковых горизонтальных стволов
Охватывает широкий диапазон, а превосходит размеры экспериментальных установок в упомянутых работах
Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов iconНиколаев Петр Владимирович
Совершенствование технологии строительства вертикальных стволов в условиях плотной городской застройки
Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов iconКомплексное обоснование прогрессивных технологических решений по интенсивной отработке высокогазоносных угольных месторождений
Специальность 05. 26. 03 – «Пожарная и промышленная безопасность» (в горной промышленности)
Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов iconРабочая программа дисциплины «Особенности конструктивных решений жилых и общественных зданий» для специальности
Рабочая программа учебной дисциплины «Особенности конструктивных решений жилых и общественных зданий» предназна­чена для реализации...
Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов iconОбоснование планировочных решений объектов инфраструктуры автомобильных дорог (на примере автозаправочных станций)
Обоснование планировочный решений объектов инфраструктуры автомобильный дорог [Электронный ресурс]: На примере автозаправочный станций...
Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов iconПовышение работоспособности резьбовых соединений на основе новых конструктивных решений и применения магнитоуправляемых наножидкостей

Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов iconОбоснование методологии и разработка инновационных технических решений освоения подземного пространства мегаполисов
Обоснование методологии и разработка инновационных технических решений освоения
Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов iconКонцепция органического времени г. Бакмана и опыт ее применения
Среди многочисленных поисков конструктивных решений проблемы содержательного анализа
Обоснование технологических и конструктивных решений по армированию глубоких вертикальных стволов iconНаучно-методическое обоснование увеличения длины горизонтальных интервалов стволов скважин в процессе их строительства
Работа выполнена в Открытом акционерном обществе Научно-производственная фирма «Геофизика» (оао нпф «Геофизика»)
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница