Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники»




НазваниеМетодические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники»
страница15/21
Дата11.12.2012
Размер2.3 Mb.
ТипМетодические указания
1   ...   11   12   13   14   15   16   17   18   ...   21
Тема 6.1 Звуковая система ПК


Студент должен:


иметь представление:

  • о звуковой системе ПК


знать:

  • принципы обработки звуковой информации;

  • состав звуковой подсистемы ПК;

  • основные характеристики звуковых плат


Звуковая система ПК. Состав звуковой системы ПК. Принцип работы и технические характеристики звуковых плат. Направления совершенствования звуковой системы. Принцип обработки звуковой информации. Спецификация звуковых систем.


Методические указания


Звуковая система ПК — комплекс программно-аппаратных средств, выполняющих следующие функции:

  • запись звуковых сигналов, поступающих от внешних источни­ков, например, микрофона или магнитофона, путем преобразо­вания входных аналоговых звуковых сигналов в цифровые и по­следующего сохранения на жестком диске;

  • воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (науш­ников);

  • воспроизведение звуковых компакт-дисков;

  • микширование (смешивание) при записи или воспроизведе­нии сигналов от нескольких источников;

  • одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex);

  • обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

  • обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного — 3D-Sound) звучания;

  • генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

  • управление работой внешних электронных музыкальных инст­рументов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой зву­ковые карты, либо устанавливаемые в слот материнской пла­ты, либо интегрированные на материнскую плату или карту рас­ширения другой подсистемы ПК. Отдельные функциональные мо­дули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.



Рисунок 10 - Структура звуковой системы ПК


Классическая звуковая система, как показано на рис. 5.1, со­держит:

  • модуль записи и воспроизведения звука;

  • модуль синтезатора;

  • модуль интерфейсов;

  • модуль микшера;

  • акустическую систему.

Первые четыре модуля, как правило, устанавливаются на зву­ковой карте. Причем существуют звуковые карты без модуля син­тезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной мик­росхемы. Таким образом, Chipset звуковой системы может содер­жать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпе­вают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не ме­няются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта


Вопросы для самоконтроля:


  1. Звуковая система ПК;

  2. Состав звуковой системы ПК;

  3. Принцип работы и технические характеристики звуковых плат;

  4. Направления совершенствования звуковой системы;

  5. Принцип обработки звуковой информации;

  6. Спецификация звуковых систем.



Тема 6.2 Модуль интерфейсов обработки звуковой информации


Студент должен:


иметь представление:

  • о звуковой системе ПК


знать:

  • состав звуковой подсистемы ПК;

  • принцип работы модуля записи и воспроизведения;

  • принцип работы модуля синтезатора;

  • принцип работы модуля интерфейсов;

  • принцип работы модуля микшера;

  • организацию работы акустической системы.


Состав звуковой подсистемы ПК. Модуль записи и воспроизведения. Модуля синтезатора. Модуль интерфейсов. Модуль микшера. Принцип работы и технические характеристики акустических систем. Программное обеспечение. Форматы звуковых файлов. Средства распознавания речи.


Методические указания


Модуль записи и воспроизведения звуковой системы осуще­ствляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access — канал прямого доступа к памяти).

Запись звука — это сохранение информации о колебаниях зву­кового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и циф­ровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем что ПК опери­рует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая систе­ма, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обра­ботки сигнала с помощью ПК необходимо обратное преобразова­ние цифрового сигнала в аналоговый.

Аналого-цифровое преобразование представляет собой преобра­зование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования.

Предварительно аналоговый звуковой сигнал поступает на ана­логовый фильтр, который ограничивает полосу частот сигнала.

Дискретизация сигнала заключается в выборке отсче­тов аналогового сигнала с заданной периодичностью и определя­ется частотой дискретизации. Причем частота дискретизации дол­жна быть не менее удвоенной частоты наивысшей гармоники (ча­стотной составляющей) исходного звукового сигнала.

Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигна­ла и преобразование его в дискретный по времени и амплитуде. На рисунке 11 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.



Рисунок 11 - Схема аналого-цифрового преобразования звукового сигнала


Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при кван­товании зависит от количества разрядов кодового слова.



Рисунок 12 - Дискретизация по времени и квантование по уровню аналого­вого сигнала квантования амплитуды отсчета.


Аналого-цифровое преобразование осуществляется специаль­ным электронным устройством — аналого-цифровым преобразова­телем (АЦП), в котором дискретные отсчеты сигнала преобразу­ются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелатель­ные высокочастотные помехи, для фильтрации которых получен­ные цифровые данные пропускаются через цифровой фильтр.

Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рисунке 12. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой диск­ретизации. На втором этапе из дискретных отсчетов путем сглажи­вания (интерполяции) формируется непрерывный аналоговый сиг­нал с помощью фильтра низкой частоты, который подавляет пе­риодические составляющие спектра дискретного сигнала.

Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, исполь­зуют компрессию (сжатие), заключающуюся в уменьшении количества отсчетов и уровней квантования или числа бит, при­ходящихся на один отсчет.



Рисунок 13 - Схема цифроаналогового преобразования


Подобные методы кодирования звуковых данных с использо­ванием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20% первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия — кодеков (кодирование-декодиро­вание), поставляемых вместе с программным обеспечением зву­ковой карты или входящих в состав операционной системы.

Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала, модуль записи и воспроизведения циф­рового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являют­ся: частота дискретизации; тип и разрядность АЦП и ЦАП; спо­соб кодирования аудиоданных; возможность работы в режиме Full Duplex.

Частота дискретизации определяет максимальную час­тоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 — 8 кГц; му­зыки с невысоким качеством — 20 — 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стерео­фонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

Разрядность АЦП и ЦАП определяет разрядность пред­ставления цифрового сигнала (8, 16 или 18 бит).

Full Duplex (полный дуплекс) — режим передачи данных по каналу, в соответствии с которым звуковая система может одно­временно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое ка­чество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, на­пример, при проведении телеконференций, когда высокое каче­ство звука не требуется.

Модуль синтезатора

Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует рисунке 14.

Синтезирование представляет собой процесс воссоздания струк­туры музыкального тона (ноты). Звуковой сигнал любого музыкаль­ного инструмента имеет несколько временных фаз. На рисунке 15, а показаны фазы звукового сигнала, возникающего при нажатии клавиши рояля. Для каждого музыкального инструмента вид сиг­нала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музы­кального инструмента. Длительность атаки для разных музы­кальных инструментов изменяется от единиц до нескольких де­сятков или даже до сотен миллисекунд. В фазе, называемой под­держкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим обра­зом. Цифровое устройство, использующее один из методов синте­за, генерирует так называемый сигнал возбуждения с заданной высотой звука (ноту), который должен иметь спектральные ха­рактеристики, максимально близкие к характеристикам имити­руемого музыкального инструмента в фазе поддержки, как пока­зано на рисунке 15, б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов, например, эха (реверберация), хорового исполнения (хо-рус). Далее производятся цифроаналоговое преобразование и фильт­рация сигнала с помощью фильтра низких частот (ФНЧ).




Рисунок 15 - Принцип действия современного синтезатора: а — фазы звукового сигнала; 6 — схема синтезатора


Основные характеристики модуля синтезатора:

  1. метод синтеза звука;

  2. объем памяти;

  3. возможность аппаратной обработки сигнала для создания зву­ковых эффектов;

  4. полифония — максимальное число одновременно воспроиз­водимых элементов звуков.

Метод синтеза звука, использующийся в звуковой системе ПК, определяет не только качество звука, но и состав системы. На практике на звуковых картах устанавливаются синтезаторы, гене­рирующие звук с использованием следующих методов.

Метод синтеза на основе частотной модуляции (Frequency Modulation Synthesis — FM-синтез) предполагает исполь­зование для генерации голоса музыкального инструмента как ми­нимум двух генераторов сигналов сложной формы. Генератор не­сущей частоты формирует сигнал основного тона, частотно-мо­дулированный сигналом дополнительных гармоник, обертонов, определяющих тембр звучания конкретного инструмента. Генера­тор огибающей управляет амплитудой результирующего сигнала. FM-генератор обеспечивает приемлемое качество звука, отлича­ется невысокой стоимостью, но не реализует звуковые эффекты. В связи с этим звуковые карты, использующие этот метод, не рекомендуются в соответствии со стандартом РС99.

Синтез звука на основе таблицы волн (Wave Table Synthesis — WT-синтез) производится путем использования пред­варительно оцифрованных образцов звучания реальных музыкаль­ных инструментов и других звуков, хранящихся в специальной ROM, выполненной в виде микросхемы памяти или интегриро­ванной в микросхему памяти WT-генератора. WT-синтезатор обес­печивает генерацию звука с высоким качеством. Этот метод син­теза реализован в современных звуковых картах.

Объем памяти на звуковых картах с WT-синтезатором может увеличиваться за счет установки дополнительных элементов па­мяти (ROM) для хранения банков с инструментами.

Звуковые эффекты формируются с помощью специального эффект процессора, который может быть либо самостоя­тельным элементом (микросхемой), либо интегрироваться в состав WT-синтезатора. Для подавляющего большинства карт с WT-синтезом эффекты реверберации и хоруса стали стандартными. Синтез звука на основе физического моделирования предусматривает использование математических моделей звуко­образования реальных музыкальных инструментов для генера­ции в цифровом виде и для дальнейшего преобразования в зву­ковой сигнал с помощью ЦАП. Звуковые карты, использую­щие метод физического моделирования, пока не получили широкого распространения, поскольку для их работы требует­ся мощный ПК.

Модуль интерфейсов обеспечивает обмен данными между звуко­вой системой и другими внешними и внутренними устройствами.

Интерфейс PCI обеспечивает широкую полосу пропускания (например, версия 2.1 — более 260 Мбит/с), что позволяет пере­давать потоки звуковых данных параллельно. Использование шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуковых данных, когда задачи обработки и передачи данных распределяются между зву­ковой системой и CPU.

MIDI (Musical Instrument Digital Interface — цифровой интерфейс музыкальных инструментов) регламентируется специальным стан­дартом, содержащим спецификации на аппаратный интерфейс: типы каналов, кабели, порты, при помощи которых MIDI-устройства подключаются один к другому, а также описание поряд­ка обмена данными — протокола обмена информацией между MIDI-устройствами. В частности, с помощью MIDI-команд мож­но управлять светотехнической аппаратурой, видеооборудовани­ем в процессе выступления музыкальной группы на сцене. Уст­ройства с MIDI-интерфейсом соединяются последовательно, об­разуя своеобразную MIDI-сеть, которая включает контроллер — управляющее устройство, в качестве которого может быть исполь­зован как ПК, так и музыкальный клавишный синтезатор, а так­же ведомые устройства (приемники), передающие информацию в контроллер по его запросу. Суммарная длина MIDI-цепочки не ограничена, но максимальная длина кабеля между двумя MIDI-устройствами не должна превышать 15 метров.

Подключение ПК в MIDI-сеть осуществляется с помощью спе­циального MIDI-адаптера, который имеет три MIDI-порта: вво­да, вывода и сквозной передачи данных, а также два разъема для подключения джойстиков.

В состав звуковой карты входит интерфейс для подключения приводов CD-ROM

Модуль микшера

Модуль микшера звуковой карты выполняет:

  1. коммутацию (подключение/отключение) источников и при­емников звуковых сигналов, а также регулирование их уровня;

  2. микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

К числу основных характеристик модуля микшера относятся:

  1. число микшируемых сигналов на канале воспроизведения;

  2. регулирование уровня сигнала в каждом микшируемом ка­нале;

  3. регулирование уровня суммарного сигнала;

  4. выходная мощность усилителя;

  5. наличие разъемов для подключения внешних и внутренних
    приемников/источников звуковых сигналов.


Источники и приемники звукового сигнала соединяются с модулем микшера через внешние или внутренние разъемы. Вне­шние разъемы звуковой системы обычно находятся на задней па­нели корпуса системного блока: Joystick/MIDI — для подключе­ния джойстика или MIDI-адаптера; MicIn — для подключения микрофона; LineIn — линейный вход для подключения любых источников звуковых сигналов; LineOut — линейный выход для подключения любых приемников звуковых сигналов; Speaker — для подключения головных телефонов (наушников) или пассив­ной акустической системы.

Программное управление микшером осуществляется либо сред­ствами Windows, либо с помощью программы-микшера, поставля­емой в комплекте с программным обеспечением звуковой карты.

Совместимость звуковой системы с одним из стандартов зву­ковых карт означает, что звуковая система будет обеспечивать качественное воспроизведение звуковых сигналов. Проблемы со­вместимости особенно важны для DOS-приложений. Каждое из них содержит перечень звуковых карт, на работу с которыми DOS-приложение ориентировано.

Стандарт Sound Blaster поддерживают приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster.

Стандарт Windows Sound System (WSS) фирмы Microsoft вклю­чает звуковую карту и пакет программ, ориентированный в ос­новном на бизнес-приложения.

Акустическая система (АС) непосредственно преобразует зву­ковой электрический сигнал в акустические колебания и являет­ся последним звеном звуковоспроизводящего тракта. В состав АС, как правило, входят несколько звуковых коло­нок, каждая из которых может иметь один или несколько дина­миков. Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуко­вые каналы.

Как правило, принцип действия и внутреннее устройство зву­ковых колонок бытового назначения и используемых в техниче­ских средствах информатизации в составе акустической системы PC практически не различаются.

В основном АС для ПК состоит из двух звуковых колонок, ко­торые обеспечивают воспроизведение стереофонического сигна­ла. Обычно каждая колонка в АС для ПК имеет один динамик, однако в дорогих моделях используются два: для высоких и низ­ких частот. При этом современные модели акустических систем позволяют воспроизводить звук практически во всем слышимом частотном диапазоне благодаря применению специальной конст­рукции корпуса колонок или громкоговорителей.

Для воспроизведения низких и сверхнизких частот с высоким качеством в АС помимо двух колонок используется третий звуко­вой агрегат — сабвуфер (Subwoofer), устанавливаемый под ра­бочим столом. Такая трехкомпонентная АС для ПК состоит из двух так называемых сателлитных колонок, воспроизводящих средние и высокие частоты (примерно от 150 Гц до 20 кГц), и сабвуфера, воспроизводящего частоты ниже 150 Гц.

Отличительная особенность АС для ПК — возможность нали­чия собственного встроенного усилителя мощности. АС со встро­енным усилителем называется активной. Пассивная АС усилителя не имеет.

Главное преимущество активной АС состоит в возможности подключения к линейному выходу звуковой карты. Питание ак­тивной АС осуществляется либо от батареек (аккумуляторов), либо от электрической сети через специальный адаптер, выполненный в виде отдельного внешнего блока или модуля питания, устанав­ливаемого в корпус одной из колонок.

Выходная мощность акустических систем для ПК может изме­няться в широком диапазоне и зависит от технических характе­ристик усилителя и динамиков. Если система предназначена для озвучивания компьютерных игр, достаточно мощности 15 — 20 Вт на колонку для помещения средних размеров. При необходимо­сти обеспечения хорошей слышимости во время лекции или пре­зентации в большой аудитории возможно использовать одну АС, имеющую мощность до 30 Вт на канал. С увеличением мощности АС увеличиваются ее габаритные размеры и повышается сто­имость.

Основные характеристики АС: полоса воспроизводимых час­тот, чувствительность, коэффициент гармоник, мощность.

Полоса воспроизводимых частот (FrequencyRespon­se) — это амплитудно-частотная зависимость звукового давления, или зависимость звукового давления (силы звука) от частоты пе­ременного напряжения, подводимого к катушке динамика. Поло­са частот, воспринимаемых ухом человека, находится в диапазо­не от 20 до 20 000 Гц. Колонки, как правило, имеют диапазон, ограниченный в области низких частот 40 — 60 Гц. Решить пробле­му воспроизведения низких частот позволяет использование сабвуфера.

Чувствительность звуковой колонки (Sensitivity) характеризуется звуковым давлением, которое она создает на рас­стоянии 1 м при подаче на ее вход электрического сигнала мощ­ностью 1 Вт. В соответствии с требованиями стандартов чувстви­тельность определяется как среднее звуковое давление в опреде­ленной полосе частот.

Чем выше значение этой характеристики, тем лучше АС пере­дает динамический диапазон музыкальной программы. Разница между самыми «тихими» и самыми «громкими» звуками совре­менных фонограмм 90 — 95 дБ и более. АС с высокой чувствитель­ностью достаточно хорошо воспроизводят как тихие, так и гром­кие звуки.

Коэффициент гармоник (Total Harmonic Distortion — THD) оценивает нелинейные искажения, связанные с появлени­ем в выходном сигнале новых спектральных составляющих. Коэффициент гармоник нормируется в нескольких диапазонах частот. Например, для высококачественных АС класса Hi-Fi этот коэф­фициент не должен превышать: 1,5% в диапазоне частот 250 — 1000 Гц; 1,5 % в диапазоне частот 1000 — 2000 Гц и 1,0 % в диапа­зоне частот 2000 — 6300 Гц. Чем меньше значение коэффициента гармоник, тем качественнее АС.

Электрическая мощность (Power Handling), которую выдерживает АС, является одной из основных характеристик. Од­нако нет прямой взаимосвязи между мощностью и качеством вос­произведения звука. Максимальное звуковое давление зависит скорее, от чувствительности, а мощность АС- в основном опреде­ляет ее надежность.

Часто на упаковке АС для ПК указывают значение пиковой мощности акустической системы, которая не всегда отражает ре­альную мощность системы, поскольку может превышать номи­нальную в 10 раз. Вследствие существенного различия физических процессов, происходящих при испытаниях АС, значения элек­трических мощностей могут отличаться в несколько раз. Для срав­нения мощности различных АС необходимо знать, какую именно мощность указывает производитель продукции и какими метода­ми испытаний она определена.

Некоторые модели колонок фирмы Microsoft подключаются не к звуковой карте, а к порту USB. В этом случае звук поступает на колонки в цифровом виде, а его декодирование производят не­большой Chipset, установленный в колонках.


Вопросы для самоконтроля:


  1. Состав звуковой подсистемы ПК;

  2. Модуль записи и воспроизведения;

  3. Модуля синтезатора;

  4. Модуль интерфейсов;

  5. Модуль микшера;

  6. Принцип работы и технические характеристики акустических систем. Программное обеспечение;

  7. Форматы звуковых файлов;

  8. Средства распознавания речи.


Практическая работа 8. Звуковая система ПК


Студент должен:


иметь представление:

  • о звуковой системе ПК


знать:

  • принципы обработки звуковой информации;

  • состав звуковой подсистемы ПК;

  • основные характеристики звуковых плат


уметь:

  • подключать и настраивать звуковые подсистемы ПК;

  • производить запись звуковых файлов.



Раздел 7. Устройства вывода информации на печать


Тема 7.1 Принтер


Студент должен:


иметь представление:

  • об устройствах вывод информации на печать


знать:

  • принцип работы устройств вывода информации на печать матричного принтера. Основные узлы и особенности эксплуатации, технические характеристики;

  • принцип работы устройств вывода информации на печать струйного принтера Основные узлы и особенности эксплуатации, технические характеристики;

  • принцип работы устройств вывода информации на печать лазерного принтера Основные узлы и особенности эксплуатации, технические характеристики.


Общие характеристики устройств вывода на печать. Классификация печатающих устройств. Принтеры ударного типа: принцип действия, механические узлы, особенности работы, технические характеристики, правила эксплуатации. Основные современные модели.

Струйные принтеры: принцип действия, механические узлы, особенности работы, технические характеристики, правила эксплуатации. Основные современные модели.

Лазерные принтеры: принцип действия, механические узлы, особенности работы, технические характеристики, правила эксплуатации. Основные современные модели.


Методические указания


Принтеры — устройства вывода данных из ЭВМ, преобразующие информационные ASCII-коды в соответствующие им графические символы и фиксирующие эти символы на бумаге.

Классификацию принтеров можно выполнить по целому ряду характеристик:

  1. способу формирования символов (знакопечатающие и знак о синтезирующие);

  2. цветности (черно-белые и цветные);

  3. способу формирования строк (последовательные и параллельные);

  4. способу печати (посимвольные, построчные и постраничные)

  5. скорости печати;

  6. разрешающей способности.

Принтеры обычно работают в двух режимах: текстовом и графическом.

При работе в текстовом режиме принтер принимает от компьютера коды символов, которые необходимо распечатать из знаки генератора самого принтера. Многие изготовители оборудуют свои принтеры большим количеством встроенных шрифтов. Эти шрифты записаны в ROM принтера и считываются только оттуда.

Для печати текстовой информации существуют режимы печати, обеспечивающие различное качество:

  • черновая печать (Draft);

  • типографское качество печати (NLQ — Near Letter Quality);

  • качество печати, близкое к типографскому (LQ — Letter Quality);

  • высококачественный режим (SQL — Super Letter Quality).

В графическом режиме на принтер направляются коды, опреде­ляющие последовательности и местоположение точек изображе­нии.

По способу нанесения изображения на бумагу принтеры подразделяются на принтеры ударного действия, струйные, фотоэлектронные и термические.
1   ...   11   12   13   14   15   16   17   18   ...   21

Похожие:

Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники» iconМетодические указания составлены в соответствии с рабочей программой по дисциплине «Программное обеспечение компьютерных сетей»
...
Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники» iconМетодические указания составлены в соответствии с рабочей программой по дисциплине «Эксплуатация и ремонт насосно-компрессорного оборудования»
Методические указания составлены в соответствии с рабочей программой по дисциплине «Эксплуатация и ремонт насосно-компрессорного...
Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники» iconМетодические указания составлены в соответствии с рабочей программой по дисциплине «Уголовный процесс»

Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники» iconМетодические указания составлены в соответствии с рабочей программой учебной дисциплины «Разработка и эксплуатация удаленных баз данных»
Государственных требований к минимуму содержания и уровню подготовки выпускников по специальности 2203 «Программное обеспечение вычислительной...
Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники» iconМетодические указания составлены в соответствии с рабочей программой по дисциплине «Технический анализ и контроль производства»
Методические указания и контрольные задания для студентов-заочников Салаватского индустриального колледжа по специальности 240404...
Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники» iconОбщие методические указания по изучению дисциплины и самостоятельной работе студентов
Методические указания составлены в соответствии с примерной (рабочей) программой по дисциплине Товароведение текстильных и одежно-обувных...
Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники» iconМетодические указания составлены в соответствии с рабочей программой по дисциплине «История мировой культуры»
Методические указания предназначены для студентов-заочников, содержат программу курса, тематику контрольных работ, вопросы к зачету,...
Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники» iconМетодические указания составлены в соответствии с примерной программой по дисциплине «Электротехника и электроника»
Методические указания составлены в соответствии с примерной программой по дисциплине «Электротехника и электроника» по специальности...
Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники» iconМетодические указания по дисциплине “Электротехника и электроника” предназначены для реализации Государственных
Методические указания составлены в соответствии с рабочей программой по дисциплине «Электротехника и электроника» для специальности...
Методические указания составлены в соответствии с рабочей программой по дисциплине «Периферийные устройства вычислительной техники» iconМетодические указания составлены в соответствии с рабочей программой по дисциплине «Охрана труда»
Заместитель директора по учебной работе гоу спо читинского лесотехнического колледжа
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница