Физическая география СНГ (Азиатская часть)




НазваниеФизическая география СНГ (Азиатская часть)
страница1/30
Дата11.12.2012
Размер3.42 Mb.
ТипЛитература
  1   2   3   4   5   6   7   8   9   ...   30


Белорусский Государственный университет

Географический факультет


ФИЗИЧЕСКАЯ ГЕОГРАФИЯ СНГ

(Азиатская часть)


Работу выполнил

ст. 2 курса 7 группы

Еленский Юрий


МИНСК

БГУ

2003

Содержание.





  1. ЗАПАДНАЯ СИБИРЬ ………………………………………

  2. КАЗАХСКИЙ МЕЛКОСОПОЧНИК………………………
  3. ТУРАНСКАЯ РАВНИНА ………………………………….


  4. ГОРЫ СРЕДНЕЙ АЗИИ И КАЗАХСТАНА …………….
  5. БАЙКАЛЬСКАЯ ГОРНАЯ СТРАНА …………………….

  6. АЛТАЙСКО-САЯНСКАЯ ГОРНАЯ СТРАНА ………….


  7. СРЕДНЯЯ СИБИРЬ ………………………………………...

  8. СЕВЕРО-ВОСТОЧНАЯ СИБИРЬ………………………….

  9. КАМЧАТСКО-КУРИЛЬСКАЯ СТРАНА ………………...

  10. АМУРСКО-САХАЛИНСКАЯ СТРАНА ………………….

ЛИТЕРАТУРА ………………………………………………





Стр.

3

21

30

49

66

76

87

106

118

128

142

ЗАПАДНАЯ СИБИРЬ

Западно-Сибирская равнина  одна из немногих физико-географических стран, границы которых отчетливо выражены в рельефе. Ее рубежами на западе являются восточные предгорья Урала. На востоке равнина ограничена уступом Енисейского кряжа и Среднесибирского плоскогорья, на севере омывается водами Карского моря. Южная часть с горами Южной Сибири и Казахским мелкосопочником. С севера на юг Западная Сибирь протянулась почти на 2500 км. С запада на восток  1900 км. Площадь Западной Сибири  около 3 млн. км2.

Специфические черты природы Западной Сибири, определяющие ее своеобразие и уникальность среди других физико-географических стран,  довольно однообразный, слабо пересеченный рельеф с малыми абсолютными и относительными высотами, исключительная заболоченность и ярко выраженная широтная зональность природных условий.

Заселение равнины русскими началось с похода Ермака (15811585гг.), хотя еще в XI  XII вв. До второй половины XIX в. Западная Сибирь в хозяйственном отношении была освоена чрезвычайно неравномерно и очень слабо.

Освоение степных и лесостепных районов Западной Сибири усилилось в начале прошлого столетия в связи с переселением сюда крестьян из густонаселенной Центральной России и строительством Сибирской железной дороги (18921896 гг.). Центральные и северные районы равнины стали интенсивно осваиваться практически лишь в последние 35-40 лет в связи с разработкой нефтяных и газовых месторождений. Это повлекло за собой быстрый рост численности населения и усиление антропогенного воздействия на природу.

Научное изучение природы Западной Сибири началось в XVIII в. участниками Великой Северной экспедиции. В конце XIX  начале XX столетия Комитет Сибирской железной дороги проводил геолого-геоморфологические исследования и изучение природных ресурсов вдоль трассы дороги. Экспедиции Переселенческого управления вели почвенно-ботанические исследования. Существенную работу по изучению природы проводил Западно-Сибирский филиал Русского географического общества, созданный в 1877 г. Несмотря на это Западная Сибирь была слабо изученной и малоосвоенной.

В советское время работы по изучению природы и естественных ресурсов Западной Сибири приобрели большой размах. Комплексные детальные исследования проводились Барабинской, Кулундинской и Гыданской экспедициями Академии наук. Большое практическое значение имеют лесотипологические и почвенные исследования, изучение торфяных болот, тундровых пастбищ, влагооборота равнины. Толчок бурному развитию экономики Западной Сибири дали геологические исследования равнины, связанные, прежде всего с поисками и освоением месторождений нефти и газа. В результате геологической съемки миллионного масштаба, проведенной в 50-60-х годах, сложилось близкое к современному представление о геологическом строении и рельефе равнины. Вопреки господствовавшему раньше мнению о морфологическом и генетическом однообразии рельефа было выявлено довольно много самостоятельных орографических единиц.

Геологическое строение и история развития территории

Геологическое строение Западно-Сибирской равнины разположена в пределах Евроазиатской литосферной плиты и представляет собой молодую плиту с гетерогенным фундаментом.

Фундамент плиты представляет собой огромную депрессию с крутыми восточными и северо-восточными и пологими южными и западными бортами. Он состоит из допалеозойских, байкальских, каледонских и герцинских блоков. Фундамент разбит разновозрастными глубинными разломами. Поверхность фундамента плиты расчленена на Внешний прибортовой пояс и Внутреннюю область.

Внешний пояс представлен склонами горно-складчатого обрамления, полого или более круто опускающимися к центральной части депрессии. Фундамент в его пределах залегает неглубоко (менее 2,5 км). Ближе всего к поверхности он подходит на крайнем юго-западе Кустанайской седловины (300-400 м). Внутренняя область разделена на две ступени. Южная ступень характеризуется глубиной залегания фундамента от 2,5 до 4,0 км. Наиболее опущенная северная ступень плиты представляет собой Ямало-Тазовскую мегасинеклизу (8-12 км).

Между фундаментом и осадочным чехлом плиты залегает переходный комплекс триасово-нижнеюровского возраста. Его образование связано со сводообразным воздыманием и растяжением фундамента, следствием чего явилось формирование внутриконтинентальной рифтовой зоны с системой грабенообразных впадин. В этих впадинах происходило накопление осадочно-вулканогенных и осадочных угленосных континентальных толщ мощностью до 3-5 км. Магматические породы переходного комплекса представлены преимущественно базальтовыми лавами и туфами. Развитие Западно-Сибирской внутриконтинентальной рифтовой зоны не привело к образованию нового океана.

Общее погружение плиты и накопление осадочного платформенного чехла началось в наиболее глубокой северной части с верхнего триаса, а на остальной территории  со средней юры и носило дифференцированный характер. Формирование чехла в мезо-кайнозойское время протекало фактически непрерывно в условиях длительного устойчивого прогибания.

Чехол представлен переслаивающимися песчано-алевролитовыми прибрежно-континентальными отложениями и морскими глинистыми и песчано-глинистыми толщами мощностью 3-4 км в южной части и свыше 7-8 км  в северной. Морские отложения преобладают в нижней части разреза (до нижнего олигоцена включительно) и связаны с бореальными трансгрессиями. Максимальные трансгрессии, охватившие почти полностью территорию плиты, имели место в конце юры, начале позднего мела и палеогена.

С тектоническими движениями олигоцена связано поднятие северного блока плиты, отчленившего Западно-Сибирское море от Арктического бассейна. Морской режим непродолжительное время еще сохраняется в центральной и южной частях равнины, но уже в середине олигоцена море через Тургайскую ложбину окончательно покидает Западную Сибирь. В связи с этим верхняя часть осадочного чехла сложена континентальными толщами, достигающими в южной, прогибающейся части плиты большой мощности, местами до 1-2 км. Среди них преобладают озерно-аллювиальные песчано-глинистые и озерные, преимущественно глинистые, отложения.

В неогене отчетливо обособляется зона субширотных поднятий соответствующих современным Сибирским Увалам.

К концу неогена уже сформировались общие орографические черты Западной Сибири. Пониженные участки совпадали с тектоническими прогибами, в которых, вероятно, располагались речные долины. Уровень моря был в это время на 200-250 м ниже современного, и большая часть дна Карского моря вместе с северными районами равнины представляла собой сушу, глубоко расчлененную речными долинами.

Общее похолодание климата, происходившее в неогене, особенно усилилось к концу периода, что привело к развитию четвертичного оледенения.

Древнее оледенение Средний и верхний плейстоцен был временем древнего оледенения и морских трансгрессий. В научной литературе до настоящего времени остро дискутируются вопросы о характере древнего оледенения на территории Западной Сибири, о количестве и синхронности или асинхронности ледниковых эпох и морских трансгрессий, о стоке западносибирских рек во время плейстоценовых оледенений.

Большинство исследователей считает, что оледенения Западной Сибири повторялись неоднократно. Выделяют Демьянское, Самаровское, Зырянское, и Сартанское оледенения. Максимальным было Самаровское оледенение, граница которого проходила субширотно вблизи 60° с. ш. Каждое последующее оледенение занимало все меньшую площадь, а Сартанское оледенение, согласно господствующим в настоящее время взглядам, было горно-долинным и оказало на развитие природы Западной Сибири лишь косвенное влияние.

Морская трансгрессия, начало которой предшествовало Демьянскому оледенению, продолжалась в течение среднего плейстоцена. Максимум ее совпал с Самаровским оледенением. Море покрывало всю территорию к северу от Сибирских Увалов. Эта часть равнины представляла собой зону морского оледенения, где происходило накопление морских отложений. Лишь в пределах Сибирских Увалов морское оледенение сменялось континентальным. Максимум верхнеплейстоценовой трансгрессии предшествовал Зырянскому оледенению.

Ледники на территорию Западной Сибири двигались из двух центров: с Полярного Урала и со Средней Сибири (плато Путорана и север Таймыра). При этом некоторые ученые (А.И. Попов, Г.И. Лазуков) считают, что даже в эпоху максимального оледенения уральский и сибирский ледники не смыкались; поэтому реки, текущие с юга, хотя и встречали преграду, образованную льдами, находили путь на север между двумя ледниками. Следовательно, сток Оби, Иртыша и Енисея в сторону Северного Ледовитого океана сохранялся в течение плейстоцена.

Другие исследователи (Н.К. Высоцкий, В.И. Громов, В.Н. Сакс, И.А. Волков и др.) утверждают, что оледенение имело форму щита, преграждавшего сток рек на север. Южнее границы ледника происходило формирование гигантских подпрудных озер, избыток вод которых сбрасывался на юго-запад в Арало-Каспийский бассейн. Подобная ситуация повторялась и в последующие оледенения. Это приводило к неоднократной перестройке гидросети. Сток в Северный Ледовитый океан был характерен лишь для межледниковий.

В отличие от Русской равнины, где талые ледниковые воды стекали на юг, в Западной Сибири, имеющей общий уклон поверхности к северу, эти воды скапливались у края ледника, образуя приледниковые водоемы, постепенно мигрирующие вслед за краем ледника к северу. Талые воды перемывали оставленную ледником морену, оглаживая холмисто-моренный рельеф и перекрывая его водно-ледниковыми отложениями. В этом заключается одна из причин ограниченного распространения в Западной Сибири типичного холмисто-моренного рельефа и относительно широкого развития водно-ледниковых и озерно-аллювиальных равнин.

В периоды оледенений на территории Западной Сибири на свободных ото льда площадях происходило глубокое промерзание грунтов и образование многолетней мерзлоты. Во внеледниковых областях шло образование лессовидных суглинков, перекрывающих все более древние отложения и достигающих местами мощности 2-2,5 м.

В течение плейстоцена наблюдались неоднократные смены знака и скорости тектонических движений. В конце последнего оледенения вновь произошло опускание северных прибрежных районов, их затопление морскими водами и накопление толщ, слагающих голоценовые морские террасы.

Регрессия моря в послеледниковое время вызвала усиление врезания рек на территории Западной Сибири. Деятельность текучих вод является основным рельефообразующим процессом в голоцене на большей части равнины. Рисунок речной сети в основном унаследован от плиоцена. Небольшие абсолютные высоты обусловили малые уклоны рек и преобладание боковой эрозии над глубинной. Об этом свидетельствует огромная ширина речных долин (в низовьях Оби до 100-120 км) при относительно неглубоком врезе (до 60-80 м). От ледникового периода на больших пространствах Западной Сибири еще сохранилась масса межморенных и остаточных приледниковых озер, а в южной части  термокарстовых и просадочных озер.

Общее потепление климата в голоцене привело к смещению к северу границ природных зон, к замещению тундростепей и холодных лесостепей, существовавших вблизи границы ледников, лесной растительностью. В южной части равнины сохраняются лесостепи и степи. Потепление достигло максимума в ксеротермальный период (бореальный ксеротермический максимум  8-9 тыс. лет назад), когда древесная растительность распространялась на 3°-4° севернее современной границы. Об этом свидетельствует нахождение стволов деревьев и пней в отложениях тундры Ямала и Гыдана.

С ксеротермальным периодом связывают начало широкого заболачивания Западной Сибири. Интенсивное испарение с поверхности привело к усыханию многочисленных озер, уменьшению их глубин и зарастанию. На месте зарастающих озер возникли множественные очаги заболачивания. Близко расположенные очаги сливались, и площадь болот возрастала. Особенно интенсивно это происходило в периоды похолоданий.

В течение голоцена отмечается несколько периодов потеплении и похолодании. В настоящее время происходит похолодание климата и связанное с ним медленное смещение границ природных зон к югу. Этот процесс достаточно отчетливо прослеживается в северной части равнины, где тундры вытесняют древесную растительность вблизи северного предела распространения редкостойных лесов. На юге наступлению леса на лесостепь препятствует хозяйственная деятельность человека. Вырубая леса, человек вмешивается в ход естественного процесса и способствует расширению площади степной зоны.

Рельеф

Современный рельеф Западной Сибири обусловлен геологическим развитием, тектоническим строением и влиянием разнообразных экзогенных рельефообразующих процессов. Основные орографические элементы находятся в тесной зависимости от структурно-тектонического плана плиты, хотя длительное мезокайнозойское прогибание и накопление мощной толщи рыхлых отложений в значительной мере снивелировали неровности фундамента. Малой амплитудой неотектонических движений обусловлено низкое гипсометрическое положение равнины. Максимальные амплитуды поднятий достигают 100- 150 м в периферических частях равнины, а в центре и на севере они сменяются опусканиями до 100-150 м. Однако в пределах равнины выделяется ряд низменностей и возвышенностей, соизмеримых по площади с низменностями и возвышенностями Русской равнины.

В пределах Западной Сибири отчетливо прослеживаются три высотных уровня. Первый уровень, занимающий почти половину территории, имеет высоту менее 100 м. Второй гипсометрический уровень располагается на высотах 100-150 м, третий  преимущественно в интервале 150-200 м с небольшими участками до 250-300 м.

Наиболее высокий уровень приурочен к краевым частям равнины. Самые низкие участки (ниже 100 м) находятся в северной и центральной частях Западной Сибири.

Среди морфоструктур господствуют пологонаклонные к внутренней части пластовые (наклонные) равнины и плато. В краевых частях преобладают пластово-денудационные равнины. При удалении от окраин амплитуда новейших поднятий уменьшается, возрастает мощность четвертичных отложений и пластово-денудационные равнины сменяются пластово-аккумулятивными.

В размещении на равнине типов морфоскульптур, созданных деятельностью экзогенных рельефообразующих процессов в неоген-четвертичное время, отчетливо прослеживается закономерная смена в направлении с севера на юг. На севере к берегам Карского моря и его заливов примыкают
  1   2   3   4   5   6   7   8   9   ...   30

Похожие:

Физическая география СНГ (Азиатская часть) iconАннотации рабочих программ направления 021000 География профиль: Экономическая и социальная география (базовая часть) профиль: Физическая география и ландшафтоведение (базовая часть)
Дисциплина «гис в географии» является базовой частью профессионального цикла дисциплин подготовки студентов по направлению подготовки...
Физическая география СНГ (Азиатская часть) iconФизическая география мира учебная программа для специальности
Кафедра Физическая география материков и океанов и методики преподавания географии
Физическая география СНГ (Азиатская часть) iconЛитература по курсу «физическая география мирового океана»
Богданов Д. В. Региональная физическая география Мирового океана / М.: Высш шк., 1985. 176 с
Физическая география СНГ (Азиатская часть) iconГеография мирового океана часть I физическая география Мирового океана Учебная
Я. К. Еловичева, профессор кафедры физической географии материков и океанов и методики преподавания географии, доктор географических...
Физическая география СНГ (Азиатская часть) iconА. А. Курков, П. П. Кучерявый, С. Н. Тупикин физическая география
Орлёнок В. В., Курков А. А., Кучерявый П. П., Тупикин С. Н. Физическая география: Учебное пособие / Под ред. В. В. Орлёнка. Калининград,...
Физическая география СНГ (Азиатская часть) iconТесты, экономическая география, страны, тестирование по географии
География класс, уроки, билеты, ответы, тесты, экономическая география, страны, тестирование по географии, география мира, география...
Физическая география СНГ (Азиатская часть) iconНауки «география» было дано
Контрольно- измерительные материалы по географии за курс 6 класса «Физическая география»
Физическая география СНГ (Азиатская часть) iconОсновная образовательная программа высшего профессионального образования по направлению подготовки 021000 «География» профиль «Физическая география и ландшафтоведение»
География образовательными учреждениями высшего профессионального образования (высшими учебными заведениями, вузами) на территории...
Физическая география СНГ (Азиатская часть) iconФормирование криоаридных ландшафтов Баргузинской рифтовой долины и особенности освоения ее человеком
Специальность 25. 00. 23 – физическая география и биогеография, география почв и геохимия ландшафтов
Физическая география СНГ (Азиатская часть) iconКаталог элективных дисциплин по биолого-географическому факультету
Для освоения данной дисциплины студенту необходимы базовые знания по следующим дисциплинам: «физическая география рк», «экономическая...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница