Решение алгебраических и трансцендентных уравнений




НазваниеРешение алгебраических и трансцендентных уравнений
страница8/27
Дата21.05.2013
Размер2.1 Mb.
ТипРешение
1   ...   4   5   6   7   8   9   10   11   ...   27

ПРИБЛИЖЕННЫЕ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ


При построении математических моделей большинства реальных физических, химических, биологических процессов возникают обыкновенные дифференциальные уравнения или уравнения с частными производными. Мы рассмотрим приближенные способы решения обыкновенных дифференциальных уравнений, ограничившись при этом для простоты лишь уравнениями первого порядка, разрешенными относительно производной.

ПОСТАНОВКА ЗАДАЧИ

Задано уравнение Y'=f(x,Y) и начальное условие Y(х0)=Y0. Требуется найти с заданной степенью точности приближенное решение Y=Y(х), удовлетворяющее начальному условию и уравнению на некотором отрезке [a,b],где a=X0.
  1. Метод Пикара.


Напомним известные теоремы Пикара и Пеано о существовании и единственности решения данной задачи (задачи Коши).

Теорема ПЕАНО утверждает, что решение задачи Коши существует в некоторой окрестности точки Хо, если функция f(x,Y) непрерывна в окрестности точки (X0,Y0).

Теорема ПИКАРА гласит, что если не только функция f(x,Y), но и ее частная производная f'у(x,Y) также непрерывна в окрестности точки (Х00), то решение задачи Коши единственно на некотором отрезке, содержащем точку Х0.

Доказательство теоремы Пикара следует из общего принципа сжимающих отображений, оно весьма непросто, но обладает существенным преимуществом -оно конструктивно. Причем последовательность функций Yn(x), которая строится в нем, сходится к решению равномерно на отрезке со скоростью геометрической прогрессии. В методе Пикара последовательность функций Yn(x) строится по рекуррентной формуле:

при n= 0,1,2,...,

а за нулевое приближение берется константа Y0: Y0 (х)Y0.

Для того, чтобы стало понятно происхождение этой рекуррентной формулы, заметим, что интегральное уравнение



эквивалентно исходной задаче Коши, поскольку любая функция Y(х), являющаяся его решением, удовлетворяет начальному условию Y(Хо)=Yо и уравнению Y'(х)=f(x,Y(х)) и наоборот.

Вопрос: Почему это действительно так?

Пример 4.1 Применим метод Пикара для решения уравнения Y'=Y с начальным условием Y(0)=1. Такая задача эквивалентна поиску решения интегрального уравнения Y=1+Y(t)dt.

В качестве начального приближения берем функцию Yо=1.

Тогда Y1=1+Yо(t)dt= 1+dt= 1+x.

Далее, Y2= 1+Y1(t)dt= 1+(1+t)dt= 1+x+x2/2.

Y3= 1+Y2(t)dt= 1+(1+t+t2/2)dt= 1+x+x2/2+x3/6.

Можно убедиться, что Yn= 1+х+x2/2+ ... +xn/n!.

Упражнение 4.1.Доказать последнее равенство строго, используя принцип математической индукции.

Упражнение 4.2.В примере 4.1 найти точное решение Y(Х) и оценить скорость равномерной сходимости Yn(x) -> Y(Х) на отрезке [0,1].

В целом, приближенные методы решения обыкновенных дифференциальных уравнений можно разбить на 3 типа:

  • аналитические, позволяющие получить приближенное решение Y(х) в виде формулы,

  • графические, дающие возможность приближенного построения графика решения Y(х),т.е. интегральной кривой,

  • численные, в результате применения которых получается таблица приближенных значений функции Y(х),

хотя такое деление и несколько условно.

Кроме метода Пикара, к аналитическим методам относится и
  1. метод разложения неизвестной функции Y(х) в ряд,


на котором мы сейчас остановимся.

Напишем формальное разложение Y(Х) в ряд Тейлора в точке а:



В это равенство входят производные неизвестной функции Y(Х) в точке а, однако именно в этой точке, пользуясь условиями задачи, мы можем последовательно найти любое число производных и получить необходимое приближение решения. В общем виде это выглядит так: Yо(а)=Y(а)= Yо; Y'(а)=f(a,Y(a))= f(a,Yo)

Дифференцируя данное нам уравнение по Х ,получим

Y''(Х)=f'х(x,Y(х))+f'у(x,Y(х))*Y'(х), откуда Y''(а)= f'х(а,Yо)+f'у(a,Yо)*f(a,Yо).

Аналогично получается и значения третьей и дальнейших производных в точке а -дифференцируем нужное число раз исходное уравнение и подставляем полученные ранее значения производных в точке а.

Пример 4.2.Выпишем первые члены разложения в ряд функции Y(x), удовлетворяющей уравнению Y'=2хY и начальному условию Y(0)=1.

Ясно, что Y(0)=1 и Y’(0)=2*0*1= 0. Далее, Y''(х)=2Y+2х*Y'(х), откуда Y''(0)=2.

Y'''(х)=2 Y'(х)+2 Y'(х)+2х*Y''(х)= 4Y'(х)+2хY''(х), откуда Y'''(0)=0.

Y(4)(х)=4Y''(х)+2хY'''(х), откуда Y(4)(0)=6.

Получаем приближенное решение Y(х)1+х2+0.5х4.

Упражнение 4.3.Пользуясь формулой Лейбница для нахождения n-ой производной произведения функций, написать разложение искомой в примере 4.2 функции в ряд Тейлора.

Упражнение 4.4.Найти точное решение в примере 4.2 и оценить качество приближения в примере 4.2 на отрезке [-0.5,0.5].

Описанные выше методы не часто применяются на практике, поскольку в методе Пикара на каждом шаге приходится вычислять интеграл, что осложняет вычисления и ухудшает точность, а в методе разложения в ряд крайне сложно формализовать на любом из языков процесс нахождения производных высокого порядка, а при малом количестве членов разложения этот метод дает хорошее приближение лишь вблизи от точки а.

Среди ГРАФИЧЕСКИХ рассмотрим
1   ...   4   5   6   7   8   9   10   11   ...   27

Похожие:

Решение алгебраических и трансцендентных уравнений iconВопросы к вступительному экзамену в аспирантуру по специальности
Однородные системы линейных алгебраических уравнений. Решение систем линейных уравнений с помощью метода Гаусса
Решение алгебраических и трансцендентных уравнений iconТехнология решения систем линейных алгебраических уравнений в распределенной вычислительной среде
Рассматривается технология решения больших систем линейных алгебраических уравнений вида
Решение алгебраических и трансцендентных уравнений iconТема №121: Методика обучения решению тригонометрических уравнений и неравенств Примерное содержание
Решение уравнений вида tg t = m. Арктангенс. Методы решения тригонометрических уравнений. Однородные уравнения. Решение тригонометрических...
Решение алгебраических и трансцендентных уравнений iconРешение систем линейных алгебраических уравнений
Матрицы. Линейные операции над матрицами: сложение и вычитание матриц, умножение матрицы на число. Умножение матриц
Решение алгебраических и трансцендентных уравнений iconОбласть применения компьютеров для решения разнообразных задач по обработке информации быстро расширяется. Можно выделить три вида информации и соответственно
Вычислительные задачи, связанные с обработкой числовой информации, например, решение систем линейных алгебраических уравнений
Решение алгебраических и трансцендентных уравнений icon«Нестандартные методы решения уравнений» Заяц Светлана Александровна
Решение некоторых уравнений сведением их к решению систем уравнений относительно новых неизвестных
Решение алгебраических и трансцендентных уравнений iconТема: Решение тригонометрических уравнений (Т. У.)
Методические приёмы: сообщения учащихся, представление нового материала путём поиска решений уравнений, самостоятельная работа по...
Решение алгебраических и трансцендентных уравнений iconРадиофизический факультет
Ип в различных системах. Также содержание дисциплины направлено на обучение студентов основам решения задач линейной алгебры, решения...
Решение алгебраических и трансцендентных уравнений iconПрямые методы решения систем линейных алгебраических уравнений

Решение алгебраических и трансцендентных уравнений iconРешение этой системы уравнений подтверждает математическое предвидение A. Beal и связь этого предвидения с элементарным
Предлагаю Вашему вниманию решение этой проблемы как решение системы уравнений A. Beal и P. Fermat
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница