Решение алгебраических и трансцендентных уравнений




НазваниеРешение алгебраических и трансцендентных уравнений
страница3/27
Дата21.05.2013
Размер2.1 Mb.
ТипРешение
1   2   3   4   5   6   7   8   9   ...   27

Контрольные вопросы


3.Каковы условия применимости методов Ньютона и итераций?

4.В чем суть методов половинного деления, Ньютона и итераций?

5. Из какого конца следует проводить касательную в методе Ньютона?

6.Какие существуют способы приведения уравнения к виду, пригодному для применения метода итераций?

7.Какой метод приближенного решения уравнений отличается от двух других в смысле слежения за точностью решения?

8.Какой метод обычно дает самую быструю сходимость?

9.Какой метод выгоднее применять - метод половинного деления или метод итераций, если максимум модуля производной функции u(x) на отрезке [a,b] равен 0.7? А если 0.4?
  1. Содержание лабораторной работы


Предварительная работа.

1. Локализовать графически большие корни уравнений ех- х - i - 1 = 0 и ln x - x + i + 1 = 0, где i - номер студента по списку в группе.

2. Привести оба уравнения на этих отрезках к виду, пригодному для применения метода итераций.

3. Составить программы всех трех методов с подсчетом числа шагов, требуемых для решения уравнения с заданной точностью .

Работа в лаборатории.

1. Ответить на вопросы контролирующей программы.

2. Ввести и отладить домашние программы. Протестировать на контрольных примерах.

3. Исполнить программы для обоих своих уравнений каждым из трех методов.

ОТЧЕТ должен содержать:

1. Название, цель работы.

2.Локализацию корней своих уравнений графическим способом и приведение их к виду, пригодному для метода итераций.

3. Текст программы для каждого из трех методов.

4. Ответы и количество шагов в каждом из методов для получения точности =1е-8.


  • ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ


При решении большинства вычислительных задач приходиться иметь дело с функциями, заданными таблично, а не аналитически. В этом случае дополнительные вопросы возникают даже тогда, когда надо определить значение функции в определенной точке. Как правило, эта задача носит вспомогательный характер, но сейчас мы ее рассмотрим как самостоятельную.
  1. Постановка задачи интерполирования.


На отрезке (a, b) в n+1 точке (узлах интерполяции) a=X0 < X1 < X2 <...< Xn=b

заданы значения Yi функцииY=f(X). Требуется подобрать вспомогательную функцию (x) (интерполяционную функцию или интерполянту) простого вида, для которой:

  1. (Xi)=Yi при i=0,1,2,3,...,n

  2. (X)f(X) при всех остальных значениях X[a,b].

Основной целью процесса интерполирования является получение быстрого и экономичного алгоритма вычисления приближенного значения функции во всех точках отрезка [a,b].

Формулировка задачи не является строго математической, поскольку в нее входят, например, слова "функция простого вида", или (X)f(X). Главные вопросы здесь -как выбрать интерполянту и как оценить точность приближения функции f(X) на отрезке [a,b].

Ответ на вопрос о точности, без каких-либо дополнительных ограничений на функцию f(X), дать нельзя, поскольку легко привести примеры совершенно непохожих друг на друга непрерывных функций, которые задаются таблично одинаковым способом. Поэтому при оценке точности налагаются ограничения на гладкость функции, что мы и увидим позже.

Рассмотрение вопроса о виде интерполирующей функции (X) привело к созданию целой теории приближений, весьма сложной и большой по объему. Поэтому мы ограничимся рассмотрением лишь простейших случаев: линейной интерполяции и интерполяции многочленами.
  1. Линейная интерполяция.


При линейной интерполяции строится ломаная, которая проходит через точки (Xi;Yi), i=0,1,2,...,n, т.е. совпадающая с искомой функцией в узлах интерполирования и линейная на каждом участке(Xi;Xi+1) при i=0,1,2,...,n-1.

Ясно, что при Xi<=X<=Xi+1 значения построенной функции (X) будут вычисляться по формуле (X)=Yi+(X-Xi) (Yi+1 -Yi)/(Xi+1 -Xi).

Упражнение 2.1 Составить программу для определения значения функции при линейной интерполяции.

Если сетка узлов достаточно плотная на отрезке [a,b], а функция f(X) гладкая, то точность этого метода вычисления приближенного значения функции f(X) вполне удовлетворительна, поэтому в инженерной практике метод линейной интерполяции весьма распространен. Однако, при решении других задач, таких, как задача численного дифференцирования, погрешности данного метода многократно возрастают и перестают быть удовлетворительными.
1   2   3   4   5   6   7   8   9   ...   27

Похожие:

Решение алгебраических и трансцендентных уравнений iconВопросы к вступительному экзамену в аспирантуру по специальности
Однородные системы линейных алгебраических уравнений. Решение систем линейных уравнений с помощью метода Гаусса
Решение алгебраических и трансцендентных уравнений iconТехнология решения систем линейных алгебраических уравнений в распределенной вычислительной среде
Рассматривается технология решения больших систем линейных алгебраических уравнений вида
Решение алгебраических и трансцендентных уравнений iconТема №121: Методика обучения решению тригонометрических уравнений и неравенств Примерное содержание
Решение уравнений вида tg t = m. Арктангенс. Методы решения тригонометрических уравнений. Однородные уравнения. Решение тригонометрических...
Решение алгебраических и трансцендентных уравнений iconРешение систем линейных алгебраических уравнений
Матрицы. Линейные операции над матрицами: сложение и вычитание матриц, умножение матрицы на число. Умножение матриц
Решение алгебраических и трансцендентных уравнений iconОбласть применения компьютеров для решения разнообразных задач по обработке информации быстро расширяется. Можно выделить три вида информации и соответственно
Вычислительные задачи, связанные с обработкой числовой информации, например, решение систем линейных алгебраических уравнений
Решение алгебраических и трансцендентных уравнений icon«Нестандартные методы решения уравнений» Заяц Светлана Александровна
Решение некоторых уравнений сведением их к решению систем уравнений относительно новых неизвестных
Решение алгебраических и трансцендентных уравнений iconТема: Решение тригонометрических уравнений (Т. У.)
Методические приёмы: сообщения учащихся, представление нового материала путём поиска решений уравнений, самостоятельная работа по...
Решение алгебраических и трансцендентных уравнений iconРадиофизический факультет
Ип в различных системах. Также содержание дисциплины направлено на обучение студентов основам решения задач линейной алгебры, решения...
Решение алгебраических и трансцендентных уравнений iconПрямые методы решения систем линейных алгебраических уравнений

Решение алгебраических и трансцендентных уравнений iconРешение этой системы уравнений подтверждает математическое предвидение A. Beal и связь этого предвидения с элементарным
Предлагаю Вашему вниманию решение этой проблемы как решение системы уравнений A. Beal и P. Fermat
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница