Решение алгебраических и трансцендентных уравнений




НазваниеРешение алгебраических и трансцендентных уравнений
страница2/27
Дата21.05.2013
Размер2.1 Mb.
ТипРешение
1   2   3   4   5   6   7   8   9   ...   27

Метод итераций


применяется к уравнению вида Х= u(x) на отрезке [a,b], где:

а) модуль производной функции u(x) невелик: | u'(x) | <= q < 1 (x[a,b] )

б) значения u(x) лежат на [a,b] ,т.е. a <= u(x) <= b при x[a,b].

Если заранее известно, что на отрезке [a,b] расположен ровно один корень уравнения Х=u(x), то достаточно проверить выполнение условия а).

Упражнения: определить, применим ли метод итераций для уравнений:

1.7 Х=ln(3X+2) на отрезке [0,5]. А на отрезке [1,5]?

    1. Х=е х-9 на отрезке [10,12]. А на отрезке [0,1]?
  1. Сведение исходного уравнения к виду, пригодному для применения метода итераций.


Сведение уравнения f(x)=0 к нужному виду обычно осуществляют одним из двух способов:

  1. Выражают один из Х, входящих в уравнение, например уравнение ех - х-=0 приводят к виду:

Х=ех или Х = ln(х)

2) Подбирают множитель и производят преобразования: f(х)=0 => k*f(x)=0 => х=х + k*f(x), т.е. u(x)=х+ k*f(x). Например, если 0 < m < f'(x) <= M при Х[a,b], то можно в качестве k взять величину - 1/М, и тогда 0 <= u'(x) = 1 +к* f'(x)= 1- 1/M * f' (x) <= 1- m/M

Упражнения. Свести к виду, пригодному для применения метода итераций уравнения:

1.9 х3- 3 х2 + 1 =0 на отрезке [ 2,3 ] .

1.10 x * tg(x/2)- sin(x/2) =0 на отрезке [-1,1 ] .

1.11 9-x2-ex= 0 на отрезке [1,2].
  1. Суть и обоснование метода итераций.


Суть метода итераций заключается в построении рекуррентной последовательности чисел, сходящейся к решению, по формуле хк+1 = u(xк), к=0,1,2,..., где х0[a,b] -произвольная точка.

Справедливость метода обосновывает следующая ТЕОРЕМА:

Пусть на [a,b] задана функция u(x), удовлетворяющая условиям а) и б), а х0 - произвольная точка отрезка [a,b], причем уравнение x=u(x) имеет корень. Тогда последовательность {Xк}, построенная по формуле хк+1 = u(xк) сходится к решению не медленнее, чем геометрическая прогрессия со знаменателем q.

Доказательство: Сравним расстояния от точек хк+1 и xк до решения (обозначим его С), используя теорему Лагранжа:

| хк+1-С| = |u(xк)- u(C)| = | (хк-с) u'(у)|<= |(хк-с)|* max | u'(x) | = q |(хк-с)|,

что и требовалось доказать.

Замечание 1. Требование существования корня приведено в теореме лишь для простоты доказательства.

Замечание 2. Теорема является одним из частных случаев применения принципа сжимающих отображений, который часто применяется в самых разных вопросах многих точных наук.
  1. Условие окончания вычислений в методе итераций.


Замечание 3. Процесс построения последовательности следует обрывать, когда станет верным неравенство |хк+1к|< *(1-q)/q. В этом случае хк+1 и дает приближение к решению с требуемой точностью.

Упражнение 1.12. Доказать, что в условиях теоремы из неравенства |хк+1к|< *(1-q)/q вытекает неравенство |хк+1-с|< .

Упражнение 1.13.Составить алгоритм и программу на одном из языков для решения уравнений методом итераций.
  1. Сравнение различных методов.


Сравнение методов обычно производится по следующим критериям:

1.Универсальность.

2.Простота организации вычислений и контроля за точностью.

3.Скорость сходимости.

Если сравнить три приведенных выше метода, то следует отметить, что

1) Самым универсальным является метод половинного деления, поскольку он применим для любой непрерывной функции. Однако и в двух других методах ограничения не слишком жесткие и, обычно, на практике можно применять любой метод.

2) Все три метода примерно одинаковы и очень просты.

3) Скорость сходимости в методе половинного деления -геометрическая прогрессия со знаменателем 1/2 , в методе итерации -со знаменателем q, а метод Ньютона, как правило, дает сходимость со скоростью, превышающей скорость сходимости любой геометрической прогрессии. Во всех случаях скорость сходимости очень высока.
1   2   3   4   5   6   7   8   9   ...   27

Похожие:

Решение алгебраических и трансцендентных уравнений iconВопросы к вступительному экзамену в аспирантуру по специальности
Однородные системы линейных алгебраических уравнений. Решение систем линейных уравнений с помощью метода Гаусса
Решение алгебраических и трансцендентных уравнений iconТехнология решения систем линейных алгебраических уравнений в распределенной вычислительной среде
Рассматривается технология решения больших систем линейных алгебраических уравнений вида
Решение алгебраических и трансцендентных уравнений iconТема №121: Методика обучения решению тригонометрических уравнений и неравенств Примерное содержание
Решение уравнений вида tg t = m. Арктангенс. Методы решения тригонометрических уравнений. Однородные уравнения. Решение тригонометрических...
Решение алгебраических и трансцендентных уравнений iconРешение систем линейных алгебраических уравнений
Матрицы. Линейные операции над матрицами: сложение и вычитание матриц, умножение матрицы на число. Умножение матриц
Решение алгебраических и трансцендентных уравнений iconОбласть применения компьютеров для решения разнообразных задач по обработке информации быстро расширяется. Можно выделить три вида информации и соответственно
Вычислительные задачи, связанные с обработкой числовой информации, например, решение систем линейных алгебраических уравнений
Решение алгебраических и трансцендентных уравнений icon«Нестандартные методы решения уравнений» Заяц Светлана Александровна
Решение некоторых уравнений сведением их к решению систем уравнений относительно новых неизвестных
Решение алгебраических и трансцендентных уравнений iconТема: Решение тригонометрических уравнений (Т. У.)
Методические приёмы: сообщения учащихся, представление нового материала путём поиска решений уравнений, самостоятельная работа по...
Решение алгебраических и трансцендентных уравнений iconРадиофизический факультет
Ип в различных системах. Также содержание дисциплины направлено на обучение студентов основам решения задач линейной алгебры, решения...
Решение алгебраических и трансцендентных уравнений iconПрямые методы решения систем линейных алгебраических уравнений

Решение алгебраических и трансцендентных уравнений iconРешение этой системы уравнений подтверждает математическое предвидение A. Beal и связь этого предвидения с элементарным
Предлагаю Вашему вниманию решение этой проблемы как решение системы уравнений A. Beal и P. Fermat
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница