Определение предмета молекулярная биология




НазваниеОпределение предмета молекулярная биология
страница8/11
Дата05.09.2012
Размер1.82 Mb.
ТипДокументы
1   2   3   4   5   6   7   8   9   10   11
У них повышенное сродство к одноцепочечной ДНК. Белок не связывается с двуцепочечной ДНК, не имеющей расплавленных участков.

Но если есть одноцепочечная ДНК, то белки легко садятся на нее, выпрямляют ее, превращая ДНК в "палку".

Белки связываются с двуцепочечной ДНК, если в ней есть нарушения вторичной структуры.

Когда в ДНК образуется расплавленный участок, белок покрывает его за счет электростатических взаимодействий. При этом проявляется сродство белков друг к другу. Они покрывают ДНК сплошным слоем (стехиометрическое количество белка).

Белки, сидящие на комплементарных цепях, не дают цепям схлопнуться, т.к. имеют мощный отрицательный заряд. Называются эти белки SSB (single strand bind).

Они не денатурируют ДНК, а лишь фиксируют одноцепочечное состояние.

Участие SSB в репликации абсолютно необходимо. Они удерживают матричные цепи ДНК в репликативной вилке в одноцепочечном состоянии, а также защищают одноцепочечную ДНК от действия нуклеаз. Они избирательно стимулируют работу ДНК-полимеразы. РНК-полимераза не может использовать одноцепочечную ДНК, покрытую SSB. Избирательность касается и вида. Например, SSB фага Т4 стимулирует ДНК- полимеразу фага Т4, но не ДНК-полимеразы Е. сoli.

SSB не ферменты - они нужны в стехиометрическом количестве.


Геликазы

В 1974г найдены геликазы.

Определение: геликазы - ферменты, денатурирующие ДНК.

У E.coli есть четыре геликазы: геликаза I, геликаза II, геликаза III и rep-белок.

Rep-геликаза используется при репликациии II одноцепочечных ДНК-содержащих фагов. Для репликации бактериальной ДНК она не нужна.

Геликазы различаются требованиями к размеру посадочной площадки, на которую они садятся для начала движения.

Площадка - это одноцепочечный участок ДНК, т.е. геликаза не может начать плавление нативной ДНК без дефектов.

Как образуется такая площадка в нативной ДНК? Эта проблема решается с помощью топоизомераз.


Топоизомеразы

Определение: топоизомеразы - ферменты, изменяющие топологию ДНК.

Топоизомеразы меняют число зацеплений одной цепи за другую.

Делятся на два класса:

Тип I (релаксазы) - уменьшают число зацеплений.

Тип II (гиразы) - увеличивают число зацеплений.

Гиразы вносят двуцепочечный разрыв ДНК по принципу работы рестриктаз.

Определение: рестриктазы - эндонуклеазы, которые узнают определенные последовательности и делают разрезы в обеих цепях.

После разрыва цепей гираза поворачивает концы ДНК на 360° и проявляет лигазную активность, т.е. сшивает цепи ДНК. В этом процессе используется энергия АТФ. Результат деятельности гираз - супервитки.

Суперспирализованная ДНК напряжена. При высоком напряжении в суперспирали в некоторых местах цепи расходятся, т.к. расплавляются А-Т богатые участки.

Гиразы имеют отношение и к транскрипции, поскольку при напряжении в молекуле ДНК плавятся А-Т богатые районы промоторов, а палиндромы переходят в форму креста.

Все природные кольцевые двуцепочечные ДНК имеют отрицательную суперспирализацию. Один супервиток приходится на каждые 200 пар нуклеотидов.

У релаксаз есть только эндонуклеазная и лигазная активности, но нет АТФ-азной.

Они разрывают только одну цепь. Происходит раскручивание напряженной ДНК, после чего релаксаза сшивает концы. Релаксаза узнает определенную конформацию суперспирализованной молекулы ДНК и режет ее, сбрасывая тем самым лишнме супервитки.

Регуляция транскрипции в бактериальной клетке осуществляется не только на уровне белков репрессоров (активаторов), но и на уровне активности гираз и релаксаз.


ДНК у эукариот не кольцевая. Тогда возникает вопрос: как же достигается плавление ori?

У фага Т4 тоже не кольцевая ДНК. Субъединицы гиразы сближают несмежные участки ДНК и образуется петля. В ней и ведется суперспирализация.


У эукариот ДНК закрепляется белками в нескольких местах на ядерной мембране. На каждом отдельном участке работает топоизомераза. Сколько участков, столько и ori.

Хотя в клетке у человека ДНК на 3 порядка больше чем у E. сoli, время репликации соизмеримо (за счет большего количества ori).

Каждая эукариотическая хромосома - полирепликон.

Определение: репликон - участок ДНК между двумя ori.


Размер фрагментов Оказаки у эукариот меньше (200-400 нукл).
Скорость работы ДНК-полимераз эукариот на порядок ниже, чем у прокариот.

Организм

Количество репликонов

Средний размер репликона, тыс.п.н.

Скорость движения репликативной вилки п.н./мин.

E.сoli

1

4200

50000

Дрожжи

500

40

3600

Дрозофила

3500

40

2600

Ксенопус (лягушка)

15000

200

500

Мышь

25000

150

2200

Бобы

35000

300

2200

У эукариот РНК-затравки размером 6-10 нукл. удаляются РНК-азой Н (hybrid). Бреши заделываются репарирующими ферментами.

Проблема репликации концов линейных молекул

Модель "заячьи уши".

Репликация концов ДНК хромосом эукариот

Удаление РНК-праймеров после завершения синтеза линейных ДНК в виде фрагментов Оказаки и заделывание образующихся между фрагментами брешей нуклеотидами ДНК приводит к тому, что дочерние цепи ДНК оказываются короче материнских на размер первого РНК-праймера (10-20 нукл.).

Образуются 3'-оверхенги, т.е. выступающие 3'-концы материнских цепей. Они узнаются теломеразой - ферментом, содержащим помимо белковой части еще и РНК, выполняющую роль матрицы для наращивания ДНК повторами.

Теломераза последовательно наращивает материнские цепи ДНК повторами, используя 3'-оверхенги в качестве затравок. Образующиеся длинные одноцепочечные концы в свою очередь служат матрицами для синтеза дочерних цепей традиционным репликативным механизмом.


Хромосомы соматических клеток человека фланкированы многократно повторенными гексамерами TTAГГГ, общая длина районов с повторами может достигать 10 тыс. пар нуклеотидов. В комплексе со специфическими белками такие тандемные повторы образуют теломеры, защищающие концы ДНК от действия экзонуклеаз, предотвращающие неправильную рекомбинацию и позволяющие концам хромосом прикрепляться к ядерной оболочке.

При каждом раунде репликации происходит укорочение теломер в среднем на 50 пар нуклеотидов. Поскольку теломерные последовательности не являются кодирующими, они выступают в роли буферной зоны - как защита от "проблемы концевой репликации".

Укорочение ДНК в ходе каждого раунда репликации лишь сокращает нетранскрибируемый текст теломеры, но не приводит к утрате смысловых последовательностей - генов и регуляторов их экспрессии.

Регуляция репликации прокариот известна, т.к. известны гены белков регуляции репликации E.сoli и механизмы их включения (выключения). Для эукариот эти механизмы еще не ясны, но известно расписание репликации ДНК по разным хромосомам.


Причины ошибок при синтезе ДНК

Способность ошибаться заложена в самой структуре фермента.

Скорее всего, ферменты, которые не ошибались, были тупиковыми ветвями эволюции. На первых этапах зарождения жизни разнообразие обеспечивалось только такими ошибками.

In vitro происходит 1 ошибка на 100 тыс. нукл. для средней ДНК-полимеразы.

In vitro можно уменьшить вероятность ошибки до 1 на 1млн. нукл., если добавить SSB, геликазу и лигазу.

Можно и увеличить вероятность ошибки до 1 на 100, если дать неадекватное количество субстрата, а также если добавить ионы серебра, бериллия, меди, кобальта, никеля, свинца. Это происходит из-за конкуренции этих ионов с ионами магния за связывание с ДНК-полимеразой.

Еще один способ повышения количества ошибок - добавление аналогов нуклеотидов. Например бромдезоксиуридина - аналога тимидина.



Это одно из средств борьбы со СПИДом и раком. Аналоги одинаково вредны для всех клеток, однако в пораженных вирусом клетках чаще проходит репликация.

Этапы проверки

Первичный отбор нуклеотидов идет по принципу комплементарности.
Способностью
к этому виду отбора обладают все ДНК-полимеразы благодаря полимеризационной 5'3' активности.

Редактирующий отбор.
Его
проводят все полимеразы благодаря экзонуклеазной активности 3'5'.

Исправление ошибок в уже синтезированной ДНК.
Этим
занимаются ферменты репарации.

Вероятность ошибок для ферментов вирусов, про- и эукариот

Объект

Вероятность замены на пару оснований

E.coli

2х10-10

Дрозофила

5х10-11

Фаг Т4

2х10-8


Разницу связывают со скоростью работы фермента. Чем медленней, тем точнее!


Основные репарабельные повреждения в ДНК и принципы их устранения

1. Апуринизация.

Каждая соматическая клетка теряет за сутки около 10000 пуринов и пиримидинов. В ДНК образуются АП-сайты.

Причины апуринизации:
изменение рН, ионизирующее излучение, повышение температуры и т.д.

Разрывается N-гликозидная связь между пуриновым основанием и дезоксирибозой. Если бы апуриновые участки не исправлялись, то была бы катастрофа.

Пиримидины тоже могут отщепляться, но скорость этого процесса на два порядка ниже.

2. Дезаминирование.

Аденин превращается в гипоксантин, который образует две водородные связи с цитозином.
Гуанин
превращается в ксантин, который образует водородные связи с тимином.
При
дезаминировании цитозина образуется урацил.
Тимин
не может быть дезаминирован (единственный в ДНК).

Наличие тимина в ДНК (вместо урацила) позволяет отличать дезаминированнный цитозин (т.е. урацил) от законного урацила, если бы он был в ДНК.

N-гликозилаза - фермент, который узнает дезаминированное основание, разрывает N-гликозидную связь и удаляет неправильное основание.

После этого АП-специфическая эндонуклеаза вносит одноцепочечный разрыв, и фосфодиэстераза отщепляет от ДНК ту сахарофосфатную группу, к которой теперь не присоединено основание. Появляется брешь размером в один нуклеотид.

У E. coli она заделывается ДНК-полимеразой I, а лигаза сшивает концы ДНК.



У эукариот брешь заделывает ДНК- полимераза .



ДНК - двуцепочечна в отличие от РНК. Наличие второй цепи обеспечивает исправление ошибок. Дезоксирибоза более устойчива, чем рибоза, к действию щелочи, т.е. при рН > 8, ДНК устойчива, а РНК- нет.

3. Тиминовые димеры.

Под действием ультрафиолетого света происходит ковалентное сшивание рядом стоящих пиримидинов. При сшивании тиминов образуется циклобутановое производное, блокирующее репликацию.

Фермент фотолиаза - узнает тиминовые димеры и на свету или в темноте образует с ними комплекс. При освещении видимым светом происходит активация фермента, циклобутановое кольцо разрывается, и вновь получаются два тимина. Этот процесс называется фотореактивацией.

И дезаминированные основания, и тиминовые димеры, кроме того, могут удаляться с помощью эксцизионной репарации.
Специфические
эндонуклеазы производят одноцепочечные разрезы (инцизия). Затем происходит удаление (эксцизия) нескольких нуклеотидов и заделывание бреши. У E. сoli заделыванием бреши занимается ДНК-полимераза I. Лигаза сшивает цепь. Она же ликвидирует одноцепочечные разрывы, возникающие при действии ионизирующей радиации.

У E.coli эксцизионная репарация осуществляется мультиферментным комплексом, включающим белки uvrA, uvrB, uvrC (ultraviolet repair), которые узнают поврежденный участок и вносят 5'- и 3'- разрывы с разных сторон от него, uvrD - геликазу, которая отсоединяет вырезанный олигомер - 12 нуклеотидов, используя энергию АТФ.

У эукариот существует функциональный (но не структурный) аналог такого мультиферментативного комплекса.

О-6-метилгуанинтрансфераза - Фермент-"самоубийца".

Имеется 14 позиций, по которым ДНК метелируется.

Гуанин может быть метилирован (по кислороду в 6-ом положении) и в такой форме будет связываться не только с цитозином, но и с тимином. Таким образом, в два шага может произойти замена пары Г-Ц на А-Т. Фермент принимает метильную группу на один из 12 цистеиновых остатков и при этом "гибнет".

Определение: геном - вся совокупность молекул ДНК клетки случае ряда вирусов говорят о геномной РНК).

Существует ядерный геном, митохондриальный геном и геном пластид. Мы будем рассматривать только ядерный геном. Соматические клетки содержат диплоидный (2n) геном, половые - гаплоидный (n).

Размер генома

Объект

Размер гаплоидного генома в парах нуклеотидов

Микоплазмы

104-106

Эубактерии (E.coli)

105-107

Грибы

(2-5)х107

Водоросли

(5-7)х107

Черви

~108

Моллюски

5х108-5х109

Насекомые

108-5х109

Ракообразные

~ 109

Иглокожие

2х108-2х109

Рыбы

3х108-1010

Амфибии

7х108-7х1010

Рептилии

(2-3)х109

Птицы

109

Млекопитающие

3х109

Цветковые растения

2х108-1011

Прямой корреляции между количеством ДНК и эволюционной продвинутостью организма нет.

Так, например, у малярийного плазмодия 0.06 пг ДНК в ядре, а у амебы 490 пг. Большое количество ДНК не обязательно приносит качественно новую информацию. Амеба пошла на увеличение количества ДНК для увеличения размеров ядра и самой клетки. Генов у нее меньше, чем у плазмодия, но они копированы много раз. У малярийного плазмодия генов больше, чем у амебы, а ДНК меньше для максимальной компактности. Малые размеры ядра и самого одноклеточного организма позволяют ему быть внутриклеточным паразитом.

У африканской двоякодышащей рыбы ДНК в 15 раз, а у амебы в 70 раз больше, чем у человека.

"Избыточность" эукариотического генома

На ~ 106 пар нуклеотидов у бактерий приходится ~5 тыс. генов. На  ~109 пар нуклеотидов у млекопитающих ~50 тыс. генов.

Минусы "избыточной" ДНК:

- увеличение времени синтеза ДНК;

- cложнее организовывать удвоение ДНК;

- высокая энергоемкость - на 1 нуклеотид для включения в цепь ДНК нужно затратить ~60 молекул АТФ.

Неопределенное следствие:

- благодаря зависимости размера ядра от количества ДНК происходит увеличение размеров клетки.

Плюсы "избыточной" ДНК:

- возникает возможность создания сложного регуляторного аппарата, позволяющего поднять организм на более высокий эволюционный уровень.

Причины избыточности:

1. Большой размер генов (за счет наличия интронов).

2. Присутствие повторенных последовательностей.
Повторяются и гены, и некодирующие участки. У эукариот некоторые последовательности повторены сотни и тысячи раз.

3. Наличие большого числа некодирующих последовательностей, часть из которых выполняет регуляторную функцию при транскрипции, а часть - необходима для компактизации генома.


Компактность генома эукариот

Компактность - другое принципиальное отличие генома эукариот от прокариотического генома.

При средней разнице размеров геномов на 3 порядка, линейные размеры эукариотических хромосом соизмеримы с длиной ДНК прокариот.

Выделяют, по крайней мере, 4 уровня компактизации ДНК. При этом нить ДНК "укорачивается" в 10000 раз.

Это все равно, что нить, длиной с Останкинскую башню (500 м), уложить в спичечный коробок (5см).

Два первых уровня компактизации эукариотического генома обеспечиваются гистонами.

Общая характеристика гистонов

Гистоны - основные белки.
Все
они обогащены лизином и аргинином - положительно заряженными аминокислотами.
Выделяют
5 фракций гистонов.
Нарабатывается
их очень много - 60 млн. молекул каждой фракции на клетку.

Фракция

Лизин

Аргинин

лиз./арг

осн.АК/кис.АК

Мол. вес (Да)

Н1 (очень богатая лизином)

29%

1%

>20

5.4

23000

Н2В (умернно богатая лизином)

16%

6%

~2.5

1.7

13774

Н2А (умеренно богатая лизином и аргинином)

11%

9%

~1

1.4

13960

Н4 (богатая аргинином и глицином)

11%

14%

~0.8

2.5

11282

Н3 (очень богатая аргинином); в ней есть цистеин, а в других - нет

10%

13%

~0.7

1.8

15348
1   2   3   4   5   6   7   8   9   10   11

Похожие:

Определение предмета молекулярная биология iconМетодические указания к самостоятельной работе студентов По дисциплине: Молекулярная биология для специальностей 020201. 65 «Биология»
Методические указания предназначены для студентов биологического факультета очной формы обучения для изучения дисциплины «Молекулярная...
Определение предмета молекулярная биология iconП о биологии рассчитана на учащихся 10-11 классов
Биологические знания становятся с каждым годом более востребованными в нашем обществе. Открытия последних лет, совершенные в таких...
Определение предмета молекулярная биология iconПрограмма итогового государственного экзамена по специальности 010700/06 18 "Молекулярная биофизика"
Структурная организация биологических макромолекул. Курсы лекций: Биохимия. Молекулярная биология.(Воробьев), Молекулярная биофизика....
Определение предмета молекулярная биология iconКарманный формат для биологов в издательстве «Дрофа» вышел в свет очередной словарь терминов по биологическим наукам – «Биохимия и молекулярная биология»
Коничев А. С. Биохимия и молекулярная биология: словарь терминов / А. С. Коничев, Г. А. Севастьянова. – М.: Дрофа, 2008. – 359, [9...
Определение предмета молекулярная биология iconРабочая программа по курсу «биохимия и молекулярная биология»
Требования Государственного стандарта высшего обрвзования по специальности «Биология»
Определение предмета молекулярная биология iconПояснительная записка рабочая программа учебного предмета «Биология»
«Биология» для 9 -го класса. Рабочая программа составлена на основе примерной программы основного общего образования по биологии...
Определение предмета молекулярная биология iconРешение генетических задач
Ы «Генетика» и «Молекулярная биология» являются одними из самых сложных для понимания в школьном курсе общая биология. Облегчению...
Определение предмета молекулярная биология iconРешение генетических задач в старших классах
Ы: «Генетика» «Молекулярная биология» являются одними из самых сложных для понимания в школьном курсе общая биология. Облегчению...
Определение предмета молекулярная биология iconРешение генетических задач в старших классах
Ы: «Генетика» «Молекулярная биология» являются одними из самых сложных для понимания в школьном курсе общая биология. Облегчению...
Определение предмета молекулярная биология iconЛитература для подготовки к олимпиаде
Албертс Б., Брей Д., Льюис Дж и др. Молекулярная биология клетки. Т. 1 М.: Мир, 1994
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница