1 История развития компьютерной техники, поколения ЭВМ и их классификация




Название1 История развития компьютерной техники, поколения ЭВМ и их классификация
страница1/8
Дата15.10.2012
Размер1 Mb.
ТипДокументы
  1   2   3   4   5   6   7   8
1 История развития компьютерной техники, поколения ЭВМ и их классификация


1. Развитие электронной базы, влияющее на усовершенствование ЭВМ. Поколения ЭВМ


ЭВМ – электронно-вычислительная машина, которая осуществляет действия с данными, представленными в той или иной форме.

Развитие радиоэлектроники и новейшей технологии произ­водства радиоаппаратуры обусловило смену поколений ЭВМ. Строго говоря, характеристикой поколения ЭВМ является конструктивно-технологическая составляющая элементной базы – вакуумные лампы, полупроводниковые приборы, интегральные микросхемы (ИМС), большие интегральные микросхемы (БИС). Разница между поколениями ЭВМ постепенно становилась все менее от­четливой по мере дальнейшего развития внешних устройств машин, систем связи, программ, дистанционных пультов, архитектуры машин и т.д.

К первому поколению относились ЭВМ, построенные в ос­новном на электровакуумных приборах.

Первая быстродействующая ЭВМ “ЭНИАК” (построена в 1946 г. в США) содержала около 18 тысяч ламп и потребляла более 100 кВт мощности электроэнергии. Машина работала в десятичной системе счисления. Сложение и вычитание произ­водились за 200 мкс, умножение – за 2800 мкс. Она пред­назначалась для решения дифференциальных уравнений в частных производных, а также некоторых других расчетов. В СССР в 1950 г. под руководством академика С. А. Лебедева в АН УССР была создана первая в Европе малая электронная счетная машина МЭСМ, которую можно отнести к классу машин общего назначения (в отличие от “ЭНИАК”, являю­щейся специализированной). Машина МЭСМ содержала около 2000 электронных ламп, работала по параллельно-по­следовательному принципу выполнения операций, имела быст­родействующую память на ламповых регистрах и внешнюю память на магнитном барабане. Структура и основные схемы этой машины являлись классическими, они положены в основу серии отечественных быстродействующих машин БЭСМ (1952 г.), БЭСМ-2, БЭСМ-4 и БЭСМ-6, созданных также под руководством академика С. А. Лебедева. Первые модели серии БЭСМ имели быстродействие до 10 тысяч арифметических дей­ствий в секунду. К первым ЭВМ широкого назначения в СССР относятся и машины М-1 (1952 г.), “Стрела” (1954 г.), “Урал-1” (1957 г.) и др.

Производство и внедрение машин первого поколения име­ло большое значение для создания отрасли электронного ма­шиностроения, для развития методов применения вычисли­тельной техники в различных областях. Так, ЭВМ первого поколения использовались для решения чисто вычислительных задач научного и делового характера. Машины просто ускоряли счет в рамках существующих мето­дов ручных вычислений. Машины первого поколения заложи­ли основу логического построения ЭВМ.

Однако применение электронных ламп сдерживало разви­тие логических и вычислительных возможностей цифровых вычислительных машин. Ламповые ЭВМ имели большие габа­ритные размеры, потребляли большую мощность, имели малое быстродействие, малую емкость оперативной памяти, недоста­точное математическое обеспечение и, что особенно важно, имели невысокую надежность.

Ко второму поколению относились ЭВМ, построенные в основном на полупроводниковых приборах. К ним относятся серийные машины М-20 и М-220, семейства серийных машин “Урал”, “Минск”, “Раздан” с быстродействием до 10–20 тысяч арифметических действий в секунду. В этот же период в Советском Союзе развиваются работы по созданию и применению цифровых управляющих вычислительных машин.

В вычислительных машинах и системах второго поколе­ния транзисторы полностью заменили в качестве активных элементов электронные лампы. Это существенно повысило надежность, снизило потребление мощности и уменьшило раз­меры ЭВМ. Было достигнуто улучшение всех основных харак­теристик, которое сопровождалось снижением их стоимости. Важным достижением явилось также применение в машинах второго поколения печатного монтажа, при котором нужная схема электрических соединений вытравливается на тонкой медной фольге, наклеенной на поверхности плоского листа изоляционного материала, и в некоторых машинах – монта­жа накруткой, при котором зачищенный конец одножильного провода накручивается на вывод, имеющий острые грани (обеспечивается получение высоконадежных соединений без нагрева и применения припоя).

Повысилась надежность периферийных электромеханиче­ских устройств, количество которых в машинах и системах второго поколения увеличилось.

Характерной особенностью ЭВМ второго поколения яви­лась их дифференциация по применению. Появились машины для научных расчетов, для решения экономических задач и, наконец, ЭВМ для управления производственными процесса­ми (управляющие машины). При создании ЭВМ второго поколения возникла необходимость обработки крупных массивов данных – решения большого количества отдельных задач. Этот период (60-е годы XX в.) характеризовался также появлением и развитием АСУ, в которых применялся только позадачный метод обра­ботки информации.

Электронные вычислительные машины второго поколения насчитывали сотни тысяч транзисторов и диодов, до миллиона резисторов и конденсаторов. Все эти компоненты связываются с помощью миллионов витых, сварных, паяных и разъемных соединений в общую систему. Разрабатывать, изготовлять и эксплуатировать такие сложные системы было достаточно трудно, дальнейшее усложнение их уже было почти невозможно. Выход из создав­шегося положения был найден при создании третьего поко­ления ЭВМ и систем на интегральных микросхемах, кото­рые появились в середине 60-х годов.

В машинах третьего поколения большинство транзисторов и дискретных деталей заменяется интегральными микросхе­мами, каждая из которых выполнена в виде отдельного при­бора. Такой прибор в корпусе, примерно равном по размерам транзистору, содержит несколько десятков компонентов, соот­ветствующих дискретным транзисторам, резисторам и конден­саторам. Эти компоненты интегрально, неразборно, соединены между собой и образуют законченный логический функцио­нальный блок, который соответствует сложной транзисторной электронной схеме, но имеет надежность и стоимость (при массовом производстве), приближающиеся к надежности и стоимости отдельного транзистора. При этом общее количест­во разъемных компонентов в ЭВМ значительно уменьшается, повышается ее надежность, а стоимость снижается. Конструк­ции современных ЭВМ третьего поколения весьма разнооб­разны, а комплект устройств, входящих в состав ЭВМ, изме­няется в очень широких пределах.

К машинам этого поколения относятся ЭВМ Единой систе­мы (ЕС) и Системы малых (СМ) ЭВМ.

Середина 70-х годов ознаменовалась появлением первых персональных компьютеров (ПК). Следующие поколения ЭВМ связаны с развитием ПК. Персональные компьютеры являются наиболее широко используемым видом ЭВМ, их мощность постоянно увеличивается, а область применения растет.


2. История развития ПК


В США первый ПК появился в продаже в 1975 г. как набор готовых плат и узлов. Он был выпущен фирмой MITS и имел поэтическое название “Альтаир-8800”. Сейчас этот ПК уже больше не выпускается. Интересно отметить, что вследствие конкурентной борьбы и хода развития технической мысли фирмы (которые были пионерами в области производства ПК) – MITS, IMSAI, РТС и другие к настоящему времени либо утратили свое лидирующее положение, либо перестали существовать вообще. Первые персональные микроЭВМ были дешевыми, но еще не очень надежными устройст­вами; для них не было создано программное обеспечение, пред­назначались они главным образом для ограниченного круга людей, любящих конструировать самостоятельно. Поскольку в самых разнообразных областях человеческой деятельности су­ществовала настоятельная необходимость автоматизации пере­работки информации, а достигнутый уровень технологического развития сделал экономически целесообразным массовое произ­водство инструментального средства автоматизации – персональных компьютеров, последние начали уверенно входить в нашу жизнь.

Второе поколение ПК появилось к концу 70-х годов в виде готовых систем. ПК этого поколения были намного надежнее, и для них было создано пусть примитивное, но намного облегчаю­щее работу программное обеспечение. В это время в лидеры производителей ПК вышли компании Radio Shack, Commodore и Apple. Наиболее популярные модели этих фирм TRS-80, Apple II и PET еще доживают свой век, но по сегодняшним меркам они уже безвозвратно устарели.

В начале 80-х годов появились ПК третьего поколения, харак­теристики которых настолько улучшились, что ПК стали повсе­местно использоваться в деловых приложениях. Успех небольших компаний серьезно встревожил таких гигантов компьютерной ин­дустрии, как IBM, DEC, Hewlett-Packard. Они интенсивно вклю­чились в разработку и производство ПК. В 1981 г. фирма IBM вы­пустила свою первую удачную модель IBM PC. Можно считать, что с этого момента производство ПК прочно встало на индустриальные рельсы и начал формироваться рынок персо­нальных компьютеров.

Наконец, к середине 80-х годов количественные и качествен­ные улучшения характеристик ПК привели к появлению нового поколения ПК – супермикроЭВМ. Основной отличительной чертой этих ПК является использование “полного” 32-разрядного микропроцессора (Motorola 68020, Intel 80386, Texas Instru­ments 32032 и др.), что в конечном счете и определяет все осталь­ные параметры вычислительной машины. Например, 32-раз­рядный микропроцессор 68020 фирмы Motorola имеет следующие основные характеристики: адресуемое пространство – 4 Гбайта, средняя производительность – 6–7 млн. oп./с (типа регистр-регистр, при тактовой час­тоте 25 МГц).

Иногда смену поколений ПК связывают с изменением микро­электронной базы: ПК с 8-разрядными микропроцессорами – I поколение; ПК с 16-разрядными микропроцессорами – II поко­ление; ПК с 32-разрядными микропроцессорами – III поколение. Такая классификация не вполне точно соответствует реальной картине. Дело в том, что стремление максимально “выжать” возможности 16-разрядных микропроцес­соров привело к тому, что стали разрабатываться усовершенство­ванные варианты этих микропроцессоров. Например, использова­ние микропроцессора Intel 8086 с 20-разрядной адресной шиной позволило в модели IBM PC XT поднять верхнюю границу объема оперативной памяти до 1 Мбайта. А завоевавший большую попу­лярность среди широкого круга пользователей ПК IBM PC AT фирмы IBM реализован на базе 16-разрядного микропроцессора Intel 80286 с 24-разрядной адресной шиной, что позволяет нара­щивать оперативную память до 16 Мбайт (максимальный объем полупроводниковой памяти – 24 Мбайта, дополнительно 8 Мбайт подсоединяются как внешние периферийные устройства и исполь­зуются для создания виртуальных дисков и вспомогательных буферов). ПК IBM PC AT обеспечивает среднюю производитель­ность – 3–4 млн. оп./с (типа регистр-регистр, при тактовой частоте 12 МГц). В опера­ционной системе MS DOS пользователю программно доступны 640 Кбайт, остальная память может использоваться в качестве электронных дисков, буферов для печати и т.п. В операционной системе UNIX (точнее, в ее версиях для ПК) программно доступно все адресное пространство в 16 Мбайт. Возможности модели IBM PC AT значительно превосходят возможности других серийно выпускаемых ПК на 16-разрядных микропроцессорах. Фирме IBM удалось создать действительно массовую модель с высокими эксплуатационными характеристиками. Можно с уверенностью констатировать, что фирма IBM стала несомненным лидером в об­ласти производства ПК, а модель IBM PC AT – стандартом для многих других фирм.

Просмотр Фильма. История развития ЭВМ.


3. Основные характеристики ЭВМ


Основные характеристики ЭВМ определяются характеристиками его компонентов. Каждый компонент представляет собой отдельное устрой­ство (device, unit), которое само по себе и во взаимодействии с другими устройствами и определяет характеристики ЭВМ.

Основными компонентами ЭВМ являются:

• центральный процессор (ЦП);

• системная плата;

• основная память;

• жесткий диск;

• монитор;

• графическая карта;

• дисковод для компакт-дисков (CD или DVD).

В литературе и в прайс-листах торговых фирм можно встретить обозначения составляющих компьютера, включающие в себя перечисления основных характеристик.


Процессор Pentium III 600 MHz Intel 256 Kb 133 MHz.

Это обозначает следующее: процессор модели Pentium III, с максимальной частотой работы – 600 MHz, производства Intel, объем вторичного кэша 256 Kb, частота системной шины 133 MHz.


Монитор Sony CPD-G200 0.25 17" 1280x1024 75 Hz ТСО’99.

Это обозначает следующее: монитор производства Sony, марки CPD-G200, с величиной “зерна” 0,25 мм, диагональю экрана 17 дюймов, максимальным разрешением 1280х1024 точек и частотой регенерации 75 Гц, удовлетворяет стандарту ТСО’99.


HDD IBM 13.7 GB IDE 5400 rpm.

Это обозначает следующее: жесткий диск производства IBM, емкостью 13,7 Гбайт, с интерфейсом IDE, скоростью вращения 5400 оборотов в минуту.


Области применения ЭВМ


1. Применение ЭВМ в научных исследованиях


В настоящее время для повышения эффективности научных исследований важное значение приобретает их автоматизация, позволяющая осуществлять моделирование исследуемых объектов, явлений и процессов, изучение которых традиционными способами затруднено или невозможно. Решению этой задачи призваны служить автоматизированные системы научных исследований (АСНИ).

ЭВМ в АСНИ могут использоваться для решения следующих основных задач:

1) управление экспериментом;

2) подготовка отчетов и документации;

3) поддержание базы экспериментальных данных;

4) построение информационных и экспертных систем.

Эффективность применения ЭВМ в автоматизации научных исследований заключается в следующем:

• в несколько раз сокращается цикл исследования за счет ускорения подготовки и проведения эксперимента, уменьшения времени обработки и систематизации данных, уменьшения числа ошибок при измерении и обработке;

• увеличивается точность результатов и их достоверность;

• повышается качество и информативность эксперимента за счет

числа контролируемых параметров и более тщательной обработки данных;

• в ходе интерактивного взаимодействия с АСНИ достигается усиление контроля за ходом эксперимента и возможность его оптимизации;

• сокращается штат участников эксперимента.

Еще одно направление использования ЭВМ связано с решением задач моделирования, часто встречающихся в практической деятельности исследователей.

Модель – система, обеспечивающая требуемую имитацию определенного процесса.

Информационная модель – набор параметров, содержащий всю необходимую информацию об исследуемых объектах и процессах.

Здесь допустимо не только математическое моделирование какого-либо процесса или явления, но и визуально-натурное моделирование, которое обеспечивается за счет виртуального отображения этих процессов и явлений средствами машинной графики (а не табличными данными или графиками, как это принято) в реальном масштабе времени. Рассмотрение различных имитационных вариантов позволяет исследователю выбрать оптимальный.

На высших уровнях иерархии в АСНИ находятся информационная и экспертная системы.

Информационная система – автоматизированная система для хранения большого объема информации, быстрого поиска требуемой информации и вывода ее в удобном для человека виде. Информационная система предназначена для хранения и просмотра базы экспериментальных и других данных. Большие объемы информации часто встречаются при цифровой обработке изображений, например в аэрокосмической съемке, астрофизике, ядерной физике и других подобных областях.

Особое место в АСНИ отводится экспертной системе, которая представляет собой мостик между теорией и практикой. Так, методы анализа данных, берущие свое начало в математической статистике, все усложняются и включают логические структуры, которые обеспечивают более высокий уровень обобщения информации.

АСНИ выпускаются в виде как специализированных компьютерных систем, так и прикладных пакетов общего назначения.

Большой популярностью среди научных работников пользуются интегрированные пакеты АСНИ. Примером такого пакета является система MathCAD фирмы MathSoft, которая позволяет в интерактивном режиме создавать, редактировать и отображать на экране монитора широкий класс функций, решать уравнения, заданные в аналитической или графической форме. Система MathCAD имеет встроенные тригонометрические и гиперболические функции, позволяет оперировать как действительными, так и комплексными числами,

использовать различные системы единиц. Кроме того, встроенный синтаксический анализатор выполняет проверку синтаксической правильности вводимых формул.

Пакет STATISTICA фирмы StatSoft – один из самых мощных пакетов по математической статистике. Он включает очень широкий набор возможностей, в том числе и таких сложных, как кластерный анализ, непараметрическая статистика, нелинейная регрессия, корреляционный анализ. Система имеет удобный интерфейс, управление которым основано на полиэкранных меню.

  1   2   3   4   5   6   7   8

Похожие:

1 История развития компьютерной техники, поколения ЭВМ и их классификация iconИстория развития вычислительной техники. Поколения ЭВМ
Знакомство учащихся с событиями и факторами, оказавшими влияние на темпы развития вычислительной техники
1 История развития компьютерной техники, поколения ЭВМ и их классификация iconПрезентация по теме «История развития компьютерной техники»
Программы: «История, современное состояние и перспективы развития компьютерной техники»
1 История развития компьютерной техники, поколения ЭВМ и их классификация iconВопросы 13 Лекция: Архитектура 32-битных микропроцессоров семейства Intel ia-32. Часть 1 13
В этой лекции кратко приведена история развития информатики, рассматриваются принципы построения, поколения и классификация ЭВМ и...
1 История развития компьютерной техники, поколения ЭВМ и их классификация iconИстория развития управляющей вычислительной техники см ЭВМ
Одно из основных направлений развития отечественной вычислительной техники связано с Институтом электронных управляющих машин (инэум)....
1 История развития компьютерной техники, поколения ЭВМ и их классификация iconК истории развития цифровой вычислительной техники в Украине. (по материалам некоторых глав из книги автора “Очерки по истории компьютерной науки и техники в Украине”)
Иными словами вклад Украины в становление и развитие компьютерной науки и техники трудно переоценить. Однако об этом и, в первую...
1 История развития компьютерной техники, поколения ЭВМ и их классификация iconКраткая история развития вычислительной техники. Основные исторические этапы, выдающиеся ученые и изобретатели, поколения электронных вычислительных машин

1 История развития компьютерной техники, поколения ЭВМ и их классификация iconРеферат «Истоия вычислительной техники»
Эвм первого поколения; eniak, мэсм, "Стрела", электронные лампы; перфоленты; Джон фон Нейман; С. А. Лебедев
1 История развития компьютерной техники, поколения ЭВМ и их классификация iconРабочая программа по дисциплине «Математика и Информатика» для специальности 021500 «Издательское и редакторское дело»
Введение. Цель и задачи курса. Структура курса и его связь с другими дисциплинами. Краткая история развития вт. Поколения ЭВМ. Роль...
1 История развития компьютерной техники, поколения ЭВМ и их классификация iconПоколения ЭВМ – история и периодизация”
Санкт Петербургский государственный университет информационных технологий механики и оптики
1 История развития компьютерной техники, поколения ЭВМ и их классификация icon1. Место и роль вычислительной техники. Состояние и перспективы развития вт. Принципы развития вт(3М). Обобщенная структурная схема ЭВМ
Место и роль вычислительной техники. Состояние и перспективы развития вт. Принципы развития вт(3М). Обобщенная структурная схема...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница