Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин




НазваниеМетодические указания Алюминиевые сплавы в производстве деталей механизмов и машин
страница1/7
Дата11.10.2012
Размер0.79 Mb.
ТипМетодические указания
  1   2   3   4   5   6   7


Методические указания


Алюминиевые сплавы

в производстве деталей механизмов и машин

(Штампованные поковки)


Москва

2004 г.

Методические указания.


Выпущены кафедрой «Системы пластического деформирования» МГТУ «Станкин»

Зав. кафедрой: д.т.н., проф. Ю.П. Кирдеев

Разработал д.т.н., проф. А.Э. Артес

Аннотация

В методических указаниях рассматриваются технологические возможности использования алюминиевых сплавов при изготовлении деталей механизмов и машин методами точной объемной штамповки.

Анализируется тенденция развития металло-сберегающих технологических процессов изготовления деталей из алюминиевых сплавов, и отмечаются особенности конструкторско-технологической подготовки при их производстве. Основным содержанием методических указаний являются технологические процессы точной объемной штамповки деталей машин методами холодной и горячей объемной штамповки (в изотермических условиях пластического деформирования).

Обращается внимание специалистов машиностроения на экономическую эффективность использования алюминиевых сплавов взамен стали и чугуна.

Поковки – изделия кузнечно-прессового производства, подразделяются на кованные и штампованные. Поскольку поковки штампованные (реже штампованные заготовки, штамповки) составляют основную массу изделий поступающих на дальнейшую механообработку, технологические процессы изготовления поковок методами ковки в методических указаниях не представлены. Однако к штампованным поковкам условно отнесены и изделия, получаемые специальными технологическими процессами пластического деформирования (раскаткой, ротационным выдавливанием и др.). Технологические процессы изготовления стандартных деталей типа гаек, болтов, винтов, заклепок, гвоздей и др. в методических указаниях не рассматриваются.

Методические указания разработаны на кафедре СПД МГТУ «Станкин» по инициативе СУАЛ-ХОЛДИНГ; внесены департаментом глубокой переработки алюминия (директор департамента В.М. Чертовиков, ведущий специалист С.Л. Цукров) и рекомендуются для использования конструкторами и технологами при конструкторско-технологической подготовке производства деталей в машиностроении.

Термины и определения

В методических указаниях используются применяемые в науке, технике и производстве термины и определения основных операций ковки и штамповки. Поскольку в литературе зачастую встречаются и термины-синонимы, ниже представлены основные термины, вошедшие в соответствующие стандарты.

Термин и ГОСТ

Определения

Термины-синонимы

Ковка

ГОСТ 18970-73

Обработка давлением с помощью универсального подкладного инструмента или бойков

Свободная Ковка

Штамповка

ГОСТ 18970-73

Обработка давлением с помощью штампа




Поковка штампованная ГОСТ 7505-89

Изделие, изготовленное горячей объемной штамповкой в соответствии с техническими требованиями ГОСТ 8479

Штамповка, штампованная заготовка

УДК 621.735.043


Методические указания.



Алюминиевые сплавы в производстве деталей механизмов и машин (Штампованные поковки)

январь 2004



Настоящие методические указания носят рекомендательный характер при конструировании деталей механизмов и машин из алюминиевых сплавов взамен чугунного кокильного литья, а также средненагруженных стальных деталей и устанавливают последовательность проведения работ по конструкторско-технологической подготовке производства деталей общемашиностроительного применения из алюминиевых сплавов методами точной объемной штамповки.

1. Особенности конструкторско-технологической подготовки производства деталей из алюминиевых сплавов.

    1. Тенденция развития металло-сберегающих технологических процессов изготовления деталей из алюминиевых сплавов.

      1. Одним из основных направлений повышения качества заготовительной базы машиностроения является увеличение доли изделий, изготовляемых штамповкой и литьем из легких сплавов. В России только 16% произведенного алюминия идет на изготовление машин, электротехники, в строительстве и производстве других изделий народного потребления. В том числе только 3,8% идет на изготовление деталей машин и оборудования и столько же в транспорте. В Японии эти показатели на порядок выше. В тоже время по потреблению чугуна на душу населения мы занимаем первое место среди индустриально развитых стран. Как известно, в производстве автомобилей и сельхозтехники замена чугунного литья на заготовки из алюминия является экономически выгодным и одновременно значительно повышающим экологическую чистоту технологических процессов [1].

      2. Алюминий, как конструкционный материал, в настоящее время является одним из самых распространенных после стали. Бурное развитие потребления алюминия обусловлено такими его основными свойствами, как высокая удельная прочность (в 1,5 раза выше, чем у стали) в сочетании малой плотностью; удовлетворительная коррозионная стойкость; хорошая способность к формоизменению давлением, литьем и резанием; возможность соединения алюминиевых деталей в различных конструкциях с помощью сварки, пайки, склеивания и других способов; хорошая восприимчивость защитных и декоративных покрытий. Все это в сочетании с большими природными запасами алюминия (8%- алюминия, 5%- железа, 2%- магния, 0,01%- меди) определяет весьма широкие перспективы развития производства деталей из алюминия [2].

      3. Основными тенденциями развития технологии точной объемной штамповки из алюминия является:

  • конструирование деталей машин из алюминиевых сплавов взамен использования чугуна и стали;

  • совершенствование технологии штамповки кристаллизующегося металла;

  • совершенствование известных технологических процессов изотермической штамповки за счет включения в технологию прогрессивных способов деформирования методами поперечного и комбинированного выдавливания;

  • разработка новых технологических процессов типа "Tixoforming" и др.

      1. К точной объемной штамповке относят технологические процессы, в результате которых изделия (поковки) имеют незначительные припуски для дальнейшей механообработки (в несколько раз меньше, чем по ГОСТ 7505-89, «Поковки стальные штампованные. Допуски, припуски и кузнечные напуски»), либо поверхности с малой шероховатостью и не подлежащие дальнейшей лезвизной или абразивной обработке. Для оценки точности введен показатель КНП (коэффициент необрабатываемых поверхностей), равный отношению необрабатываемых поверхностей поковок к площади всей поверхности детали. КНП деталей, изготовленных методами холодной объемной штамповки или методами порошковой металлургии, может достигать 0,85 - 0,95. Несколько ниже КНП при изотермической штамповке и штамповке методом тиксоформирования.

    1. Анализ технологичности конструкции изделия.

      1. Проектируя технологический процесс объемной штамповки, технолог на основе анализа возможных альтернативных вариантов, должен обеспечить необходимый уровень служебных характеристик, изменение формы заготовки, точные размеры и качество поверхности, улучшение свойств исходного материала, а в целом снижение себестоимости изготовления деталей.

      2. При постановке изделия на производство необходимо проводить экспертную оценку технологичности конструкции изделия. Под технологичностью продукции понимается совокупность свойств конструкции изделия, проявляющихся в возможности оптимальных затрат труда, средств, материалов и времени при технологической подготовке производства, изготовлении и эксплуатации по сравнению с соответствующими показателями однотипных конструкций изделий того же назначения (ГОСТ 18831-73).

      3. На основе анализа технологичности конструкции изделия, конструктору в ряде случаев следует проводить рационализацию конструкции детали, приспосабливая ее к оптимальной ресурсосберегающей технологии.

      4. Последовательность проектирования технологических процессов холодной и горячей объемной штамповки деталей из алюминиевых сплавов практически мало отличается от методики принятой в области штамповки стальных деталей [4]. Существенным отличием являются термомеханические режимы деформирования. Более низкая температура нагрева алюминиевых сплавов (~ 4500С) и меньшие удельные силы деформирования металла обеспечивают более высокую стойкость штампов. При этом условия труда и требования экологии более благоприятны. Поэтому основное оборудование кузнечно-прессовых цехов машиностроительных предприятий не требует модернизации при переходе на штамповку из алюминиевых сплавов.

      5. К особенностям технологических процессов штамповки алюминиевых сплавов следует отнести:

  • возможность в ряде случаев сокращения числа металлургических переделов изготовления исходных заготовок для штамповки. Так , например, фланец (рис.1) может быть изготовлен


Рис. 1. Схема прямого выдавливания фланца

из кольцевой заготовки


горячей штамповкой выдавливанием из кольцевой заготовки, полученной из полого слитка диаметром 426 м и с толщиной стенки 60 мм;

  • возможность изготовления более широкого диапазона номенклатуры поковок и деталей, штампуемых в холодном состоянии, поскольку, в отличие от технологии холодной штамповки из стальных заготовок не требуется нанесения специальных покрытий (например, цинко-фосфатного) на поверхность заготовки для предотвращения адгезии;

  • большие возможности использования эффекта сверхпластичности;

  • возможность нанесения на поверхность поковки после ее механообработки сверхтвердого коррозионного покрытия (микродуговым оксидированием) , в результате чего в трущейся паре алюминиевая деталь- стальная закаленная, последняя изнашивается быстрее;

  • возможность горячей объемной штамповки высококремнистых сплавов (за- эвтектических силуминов) марок 01390, 01391 и др. [3] взамен чугуна, при изготовлении деталей типа тормозных цилиндров, поршней и др. благодаря относительно высокой пластичности прутков и труб полученных поперечно-винтовой прокаткой из слитков с ультразвуковой обработкой расплава.

На рис. 2 представлена деталь, которая может быть отштампована из сплава 01391 взамен литья под давлением из сплава АК12М2. Новые сплавы представляют также интерес при штамповке деталей с тонкими ребрами.

Рис. 2.


2. Выбор алюминиевых сплавов при конструировании деталей машин (марки, обозначения, механические характеристики, сортамент).

2.1 Классификация алюминиевых сплавов.

2.1.1 Алюминиевые сплавы подразделяются на две большие группы:

  1. литейные (АК7, АК5М2, АК12М2 и др.), не подвергающиеся после отливки пластическому деформированию (за исключением тех, которые подвергаются деформированию в условиях всестороннего неравномерного сжатия);

  2. деформируемые полуфабрикаты, из которых получают из слитка, прессованием, прокаткой, ковкой, штамповкой или другими видами обработки давлением. В настоящих методических указаниях приводятся данные, которые относятся в основном к деформируемым алюминиевым сплавам, отличающимся большим разнообразием прочностных, пластических, коррозионных и декоративных характеристик.

      1. Наиболее важными признаками классификации алюминиевых сплавов является химический состав и определяемый составом и условиями термической обработки уровень механических свойств полуфабрикатов (см. приложение № 1) [5].

Высокими пластическими, технологическими свойствами, коррозионной стойкостью, хорошей свариваемостью обладают технический алюминий и термически неупрочняемые сплавы алюминия с марганцем и магнием (АД00, АД0, АМц, АМг и др.) Высокой технологичностью при обработке давлением обладают сплавы системы Al-Mg-Si. Это сплавы марки АД31, АДЗЗ, АД35. Сплавы хорошо поддаются прессованию при больших скоростях деформирования, а также штамповке в холодном и горячем состоянии. Из них получают профили и поковки различной конфигурации. Они хорошо подвергаются цветному анодированию. Однако, сплавы типа АД31 имеют не высокие прочностные характеристики (см. приложение № 1). На рис. 3 представлены детали пневмоаппаратуры ( 40 - 65), полученные холодной объемной штамповкой на прессе К0032 (160 тс) из сплава АДЗ1. Сплавы системы Al-Zn-Mg также обладают высокой технологичностью. Так, например, из сплава типа 1925 изготавливают детали прессформ.

Сплавы системы Al-Cu-Mg имеют широкий интервал прочностных свойств (Д1, Д16, В65 и др.) обладают низкой технологичностью при литье и обработке давлением. Сплавы относятся к категории несвариваемых плавлением из-за высокой склонности к образованию кристаллизационных трещин. Хорошо обрабатываются резаньем сплавы 2007, 2011.

Сплавы системы Al-Cu-Mg-Fe-Ni-Si применяются для изготовления изделий, работающих при повышенных температурах (до 250°С). Они имеют хорошие технологические свойства при литье и обработке давлением.

На рис. 4 представлены чертежи отливки (а) и поковка (б), изготовленные литьем (Аl2) и штамповкой из сплава АК4. Штамповка взамен кокильного литья сокращает расход металла в 2 раза. При этом нет необходимости в латунном вкладыше для нарезания резьбы.




Рис. 3. Детали пневмоаппаратуры, полученные холодной
объемной штамповкой из сплава АД31.





Рис. 4. Чертежи отливки (а) из сплава Al2 и поковки (б), полученной
изотермической штамповкой выдавливанием из сплава АК4.


Сплавы системы Al-Cu-Mn обладают хорошей технологичностью при литье и обработке давлением, отличаются высокими механическими характеристиками при температурах до 250°С, хорошо свариваются всеми видами сварки. Они применяются в условиях криогенных температур, коррозионная стойкость их низкая из-за высокого содержания меди. Коррозионную стойкость можно повысить у этих сплавов (Д20, Д21, и др.) микродуговым оксидированием (см. приложение № 2) [6].

Сплавы системы Al-Zn-Mg-Cu наиболее высокопрочные. Так, например, у сплава В96цТ1, = 650 Mпa (HB-145). Они имеют низкую штампуемость. Длительная эксплуатация возможна при температурах не выше 100-120°С. На рис. 5 представлена поковка корпуса с внутренним шпангоутом из сплава В96цЗ, у которой в=585н-600 МПа.

    1. Новые деформируемые термически неупрочняемые сплавы на основе системы
      Al-Mg-Sc марок 01515. 01523. 01535. 01545, 01570. 01571.


Новые сплавы на основе системы Al-Mg-Sc имеют те же основные достоинства, что и традиционные сплавы системы Al-Mg:

  • хорошую свариваемость;

  • высокую коррозионную стойкость;

  • высокую технологичность в металлургическом и машиностроительном производствах;

  • полуфабрикаты и готовые детали из них не требуют упрочняющей термической обработки.

При одном и том же содержании магния (1-6,8%) сплавы на основе системы Al-Mg-Sc по прочностным характеристикам, особенно по пределу текучести, в 1,5-2 раза превосходят традиционные алюминиево-магниевые сплавы при удовлетворительной пластичности (см. таблицу № 1, приложение № 2).

      1. Области применения сплавов системы Al-Mg-Sc:

  • сварные корпуса космических летательных аппаратов (01570);

  • сварные корпуса легких скоростных судов (01570);

  • детали сложной формы, получаемые сверхпластической формовкой (01570, 01571);

  • элементы шасси легкового автомобиля (01535, 01545);

  • криогенные сварные конструкции, в том числе эксплуатируемые при

  • температуре жидкого водорода (01535, 01545);

  • сварные конструкции, работающие в агрессивных средах, в том числе резервуары и трубопроводы для хранения и перекачки сырой нефти с повышенным содержанием сероводорода (01535, 01523);

  • радиационно стойкие сварные конструкции (01523);

  • теплообменники (01515).

Применение сплавов системы Al-Mg-Sc взамен традиционных сплавов системы Al-Mg позволяет снизить массу и металлоемкость конструкций на 20-30%. В ряде конструкций сплавы системы Al-Mg-Sc могут использоваться взамен термически упрочняемых алюминиевых сплавов (Д16, 1201 и др.). В этом случае эффект достигается за счет исключения операций закалки и старения.




Рис. 5. Поковка корпуса с внутренним шпангоутом из сплава В96цЗ.


    1. Особую группу составляют высококремнистые сплавы системы Al-Si-Mg и Al-Si-Cu-Mg (А356, А357, С355, А319, А390), поставляемые в виде слитков для тиксотропной штамповки. Из этих сплавов изготавливают поковки тормозных цилиндров и других деталей сложной формы в автомобиле- и тракторостороении.

3. Экономическая эффективность использования алюминиевых сплавов в машиностроении.

    1. Основной составляющей экономической эффективности использования алюминиевых сплавов в деталях транспортных механизмов и машин является снижение затрат на топливо и повышение грузоподъемности.

В мировой практике установлено, что снижение массы машины на 1 кг позволяет экономить 1 кг топлива в год. Применительно к сельхозмашинам не менее важным эффектом будет снижение давления на почву. В транспортном машиностроении эффективным является изготовление различных емкостей и цистерн, а так же вагонов из высокопрочных алюминиевых сплавов. Растет использование алюминиевых сплавов в судостроении.

Использование алюминиевых сплавов в производстве автомобильных колес получило большое распространение (см. приложение № 3). Снижение массы движущихся механизмов в дальнейшем пойдет и по пути применения магниевых сплавов, что также подтверждает тенденцию увеличения доли легких сплавов в производстве деталей машин.

    1. Алюминиевые трубы, также как и стальные, в основном используются в нефтегазовой промышленности. Особенно эффективно применение высококачественных труб из алюминиевых сплавов (бурильных, насосно-компрессорных и обсадных труб) взамен дорогостоящих труб из нержавеющих сталей для работы в сероводородсодержащих нефтепромысловых средах. При этом стоимость бурильных алюминиевых труб составляет $3 тыс. за тонну, а применение труб из нержавеющих сплавов с содержанием хрома 20-30% и никеля до 50% ведет к повышению их стоимости до $18-25 тыс. за тонну [7].

Эффективным является возможность штамповки крупногабаритных плоских и воротниковых фланцев (ГОСТ 12820 и ГОСТ 12821) диаметром 24” и более из литых трубных заготовок.

    1. В арматуростроении перспективным является использование алюминиевых сплавов при изготовлении штамповкой различных пробок и других деталей шаровых кранов и клапанов. Так, например, для штамповки пробки шаровой из стали 12х13 Н9Т для запорного клапана Ду125 используется 12 кг. стальной трубы стоимостью 100 руб. за 1 кг. При переходе на технологию штамповки из алюминиевого сплава АК6 примерно в три раза уменьшается масса поковки, что позволяет даже при последующей относительно дорогой операции микродугового оксидирования поверхности пробки получить значительный экономэффект.

    2. В мелкосерийном и серийном производстве большое количество стальных деталей изготавливается с низким коэффициентом использования металла (КИМ). Зачастую он находится в пределах 0,2-0,4. В этом случае эффективным является переход с затратной технологии (формообразование детали в основном за счет лезвийной механообработки) на прогрессивную точную объемную штамповки из алюминиевых сплавов.

Так, например, при штамповке детали “переходник” (рис. 6) из сплава АМг5 масса поковки равна 4,65 кг. (КИМ=0,8), вместо 46 кг. стальной (сталь 25) кованой поковки (КИМ=0,24). Низкий КИМ у стальной поковки объясняется малой партионностью переходов – 400 штук в год. С учетом того, что другие два типоразмера переходников имеют такие же диаметры фланцев и могут быть изготовлены по групповой технологии в том же штампе, эффективность перехода на штамповку из алюминия становится очевидной.

Однако с целью обеспечения равнопрочной конструкции детали следует увеличить высоту фланца из алюминия до 15 мм. (в у сплава АМг5Н – 420МПа) вместо 12 мм. у стального (в у стали 25 – 520 МПа).

В расчетах экономической эффективности следует учитывать, что стоимость “производства” 1 кг. стальной стружки в 2-3 раза больше стоимости 1 кг. стального сортового проката (при использовании в основном токарной механообработки).

    1. В связи с тем, что свыше 70% деталей машин и механизмов изготавливается на предприятиях с мелкосерийным и серийным производством, эффективным является концентрация штамповки алюминиевых деталей на ограниченном количестве заводов, имеющих развитый парк кузнечно-прессового оборудования (КУМЗ, СМЗ, ВСМПО и др.). При этом эффективность производства точных поковок может быть достигнута путем использования групповых принципов обработки. Наибольший эффект достигается, когда заказчик получает не только поковки, но и готовые детали с покрытием. В этом случае изготовитель поставляет детали с максимально добавленной стоимостью, а заказчику нет необходимости устанавливать дорогостоящее оборудование для механообработки и нанесения покрытий. производственные возможности КУМЗа представлены в приложении № 4.


Рис.6 Контуры поковок переходника:
а–кованой; б- штампованной

(пунктиром обозначен контур детали).


4. Определение сортамента и номенклатура полуфабрикатов для холодной и горячей объемной штамповки.

Для холодной и горячей объемной штамповки в качестве исходных заготовок применяют прессованные прутки и трубы, плиты, профиль и литые круглые слитки.

    1. Прессованные прутки из алюминия и алюминиевых сплавов в соответствии с ГОСТ 21488-97 изготавливают круглого, квадратного и шестигранного сечения.

    2. Прутки круглого сечения поставляются в диапазоне диаметров от 8 до 400 мм, с предельными отклонениями нормальной, повышенной и высокой точности.

При этом нормальный ряд диаметров (мм) : 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 75, 80, 90, 100, 110, 120, 130, 140, 150, 160, 180, 200, 250, 300, 350, 400..

    1. Прутки квадратного сечения поставляются в диапазоне вписанных окружностей в пределах от 8 до 200 мм, с нормальным рядом; мм: 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140, 150, 160, 180, 200.

    2. Диаметры вписанных окружностей шестигранных прутков составляют нормальный ряд; мм: 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 27, 30, 32, 36, 41, 46, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 140, 160, 180, 200.

    3. Перессованные прутки изготавливают из алюминия марок АД0, АД1, АД и алюминиевых сплавов марок АМЦ, АМЦС, АМГ2, АМГ3, АМГ5, АМ Г6, АД31, АД33, АД35, АВ, Д1, Д16, АК4, АК4-4, АК6, АК8, В95, 1915, 1925 с химическим составом по ГОСТ 1131.

По согласованию изготовителя и потребителя допускается изготовлять прутки из алюминия других марок высокой и технической чистоты по ГОСТ 11069.

    1. Прутки изготовляют немерной длины:.

от 1,0 до 6,6 м – для диаметров до 80 мм;

от 1,0 до 5,0 м – для диаметров от 80 до 110 мм;

от 0,5 до 4,0 м – для диаметров свыше 110 мм.

При этом прутки круглые диаметров до 15 мм включительно в состоянии без термической обработки или в мягком (отожженном) состоянии изготавливают в бухтах немерной длины.

    1. Прутки круглого сечения в соответствии с ГОСТ Р51834-2001 “Прутки перессованные из алюминиевых сплавов высокой прочности и повышенной пластичности” поставляются в диапазоне диаметров от 30 до 300 мм. Прутки квадратного сечения в диапазоне вписанных окружностей от 31 до 150 мм, а шестигранного сечения в диапазоне вписанных окружностей от 30 до 100 мм.

    2. Прутки из алюминиевых сплавов высокой прочности и повышенной пластичности (с рекристализованной структурой) изготовляются из сплавов марок АВ, Д1, Д16, АК4, АК6, АК8, В95 с химическим составом по ГОСТ 4781.

    3. Перессованные трубы из алюминия и алюминиевых сплавов тех же марок, что и прутки, поставляют в диапазоне диаметров от 18 до 300 мм, с толщиной стенки от 1,5 до 40 мм. Точностные параметры труб из алюминия и алюминиевых сплавов устанавливает ГОСТ 18482-79.

Точностные параметры труб из алюминия и алюминиевых сплавов устанавливает ГОСТ 18482-79.

Например, для труб с толщиной стенки 4 – 7 мм отклонение толщины составляет (0,5 – 0,7)мм, то есть +-10%, а при толщине 40 мм - +-3,0 мм, то есть +- 7,5%.

При этом нормальные ряды:

наружных диаметров, мм: 18, 20, 22, 25, 28, 30, 32, 35, 38, 40, 42, 45, 50, 52, 55, 58, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 230, 240, 250, 260, 270, 280, 230, 300;

толщин стенок: 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 7.5, 8.0, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 30.0, 32.5, 35.0, 37.5, 40.0

Более точными, а поэтому более дорогими, являются алюминиевые холоднодеформируемые трубы по ГОСТ 18475-92.


    1. Плиты. Из плитных заготовок в кузнечно-прессовом производстве наиболее часто применяются типовые алюминиевые плиты с размерами, мм: ширина до 2500, длина до 10000 и толщина от 10 до 200. [8]

При прокатке плит из плоских слитков некоторых сплавов (АМ6 и др.) для улучшения поверхности применяют технологическую плакировку слитков алюминием (толщина плакировки обычно не превышает 1,5% от толщины плиты).

Плиты из термически упрочняемых сплавов изготавливают прокаткой с последующими закалкой и правкой растяжением. Максимальные размеры плит из алюминиевых сплавов – 18300 х 3650 х 152 мм. Допустимая разнотолщинность плит толщиной 11 – 80 мм составляет 0.25 – 0.50 мм; допуски на ширину +-0.40 - +-2.0 мм; на длину – 30 – 200 мм ; на плоскостность – на один метр длины 2-10 мм.

В настоящее время все большее применение при изготовлении пресформ находят плиты из алюминиевого сплава Д16Т, у которого при нагреве до 200 С прочность остается достаточно высокой ~ 420МПа (520МПа при t=20 С) [см. приложение № 1].

    1. Слитки для объемной штамповки.

В целях сокращения числа переделов изготовления исходных заготовок для штамповки, в ряде случаев целесообразно вести изготовление поковок непосредственно из литого полуфабриката взамен прессованного.

При этом имеется в виду получение качественной мелкозернистой структуры поковок за счет измельчения зерна в результате значительных степеней деформации при штамповке. Так, например, для изготовления поковок фланцев с развитой втулочной частью (воротниковые фланцы по ГОСТ 12821 и др.) с размерами до 24” и более целесообразно в качестве исходных заготовок использовать литые трубные заготовки диаметром до 600 мм с толщиной стенок 80 – 100 мм.

Кроме перечисленных выше марок сплавов, предназначенных для прессования и штамповки необходимо указать на возможность штамповки различных деталей машиностроения из литейных сплавов с высоким содержанием кремния. При этом исходные слитки должны иметь мелкозернистую структуру (менее 70 мкм), получаемую с использование электромагнитного или ультразвукового методов перемешивания расплава и высокую скорость охлаждения в кристаллизаторе.

Так, например, из литейного сплава АК12М2 могут быть изготовлены тормозные цилиндры и др. детали, изготавливаемые пока из чугуна. Использование литых заготовок с мелкозернистой структурой позволяет вести штамповку с наличием растягивающих напряжений во время деформирования материала в штампе.

С целью получения мелкозернистой структуры, в соответствии с технологией, разработанной в ВИЛСе, слитки получаемые с использованием ультразвуковой обработки при полунепрерывном литье, подвергают прокатке. Такая прокатка, благодаря наличию больших сдвиговых деформаций, уменьшает величину зерна с 70 до 30 и менее микрометров [3].

Слитки для штамповки методом тиксоформирования из алюминиевых сплавов системы Al-Si-Mg и Al-Si-Cu-Mg, получаемые с использованием электромагнитного перемешивания расплава, поставляются в диапазоне диаметров от 76 до 152 мм.

    1. Профили из алюминиевых сплавов получили наибольшее применение в конструкциях окон, витражей, витрин и пр. Профили – пересованные изделия с заданными размерами и формой поперечного сечения, подразделяются на сплошные , полые и комбинированные. К комбинированным профилям относят изделия, у которых внутренние и наружные элементы выполненные из алюминиевых профилей из одной марки сплава, соединены между собой термовставкой (ГОСТ 22233-2001, “Профили прессованные из алюминиевых сплавов для светопрозрачных ограждающих конструкций”) из материала с более низкой теплопроводностью, к которым предъявляются и другие требования.

    2. Профили, обычно изготовленные из сплава АД31Т1, поставляются как полуфабрикат или как готовый профиль, имеющий защитно-декоративное покрытие. Готовые профили изготавляются с покрытием: анодно-окисным –Ан, жидким лакокрасочным –Жл, жидким электродифузным – Жэ, порошковым полимерным – П комплексным – К(двухслойное, состоящее и различных видов покрытия).

Профильный полуфабрикат зачастую подвергают штамповке с использованием операций гибки, обжима, раздачи и др.

    1. Особый интерес представляют профили из сплавов типа АМг5 со сплошным прямоугольным сечением (с выступами и впадинами), из которых после гибки и сварки кольцевой заготовки ведут горячую раскатку колец больших диаметров сложного поперечного профиля.

    2. Профили для плит прессформ (см. приложение №6) могут подвергаться холодной калибровке для получения точных размеров и высокого качества поверхности.


5. Технологические процессы горячей объемной штамповки.


5.1. Алгоритм проектирования технологических процессов объемной штамповки достаточно широко представлен в специальной литературе [4,8] и содержит следующие основные этапы:

  • экспертная оценка возможного использования алюминиевых сплавов взамен стали, чугуна и тяжелых цветных металлов и сплавов;

  • анализ конструкции детали и оценка ее технологичности;

  • разработка чертежа штампованной поковки в соответствии с ГОСТ7505-89 и отраслевыми стандартами;

  • установление операций и переходов и выбор термомеханических режимов штамповки;

  • выбор оборудования и проектирование штамповой оснастки;

  • составление и оформление технологической карты с нормированием времени штамповки и указанием средств контроля качества поковки.


5.2. Разделка исходных полуфабрикатов (слитков, прутков, труб и профилей) на заготовки.

Основными способами разделения исходных полуфабрикатов из алюминиевых сплавов на штучные заготовки для холодной и горячей объемной штамповки являются отрезка на ленточных и дисковых пилах, сдвиговая отрезка на пресс-ножницах и в специальных штампах , плазменно-дуговая резка [10].

5.2.1. Резка на пилах позволяет получать ровные торцы на отрезаемой заготовке и перпендикулярные к ее оси. Пилы подразделяются на дисковые и ленточные. Дисковые пилы имеют диаметр диска от 200 до 800 мм. При диаметре диска 800 мм можно производить резку прутков и слитков до 300-350 мм. На ленточных пилах можно разрезать слитки любого диаметра, а прутки и трубы малых диаметров сразу несколько штук в пакете, в результате чего увеличивается производительность.

Допуски на длину заготовки до 300 мм составляют + 0,8 мм. Производительность резки на пилах при диаметре прутка равным 100 мм составляет до 50 штук заготовок в час. Стойкость ленточной пилы (до износа и ее замены) до 5 м2 суммарной площади поперечных сечений заготовок.

При резке на дисковых пилах получается отход металла на пропил толщиной от 3 до 8 мм, а на ленточных пилах от 0,8 до 2,5 мм. Такие параметры резки являются удовлетворительными применительно к мелкосерийному и серийному производству.

5.2.2. Разрезку на пресс-ножницах и в штампах на универсальных кривошипных прессах следует применять в массовом производстве в основном для «твердых» алюминиевых прутков (Д16Т, ДIT, АК6TI, В95TI и др.). Эти ограничения связаны с тем, что кромки ножей сминают металл и срезают на глубину С, (рис. 7) после чего происходит хрупкое разрушение металла. Внедрение ножей сопровождаются утяжкой соседних участков металла.





Рис. 7. Схема сдвиговой резки прутка и торцы среза:

  1. зоны смятия металла Е, Е1 (проекция на диаметральное сечение); 2 – зоны скола металла от развивающихся трещин; 3 – зоны внедрения ножей и среза металла на высоту С (блестящий поясок); 4 – зоны утяжки металла
  1   2   3   4   5   6   7

Похожие:

Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин iconПрограмма вступительного экзамена по специальности
Расчеты, проектирование, модернизация деталей, узлов механизмов машин и агрегатов, перерабатывающих пищевые материалы. Методы и методики...
Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин iconПрограмма вступительного экзамена в аспирантуру по специальной дисциплине
Классификация деталей машин. Краткий исторический обзор развития конструкций деталей машин. Развитие теории деталей машин. Роль отечественных...
Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин iconМетодические указания и задания по выполнению домашних контрольных работ учащихся заочного обучения
Назначение дисциплины – дать будущим техникам основные сведения о законах равновесия и движения материальных тел, о некоторых методах...
Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин iconИ машин методические указания и задания на
Теория механизмов и машин: методические указания и задания на курсовой проект с использованием систем автоматизированного проектирования...
Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин iconИ д етали машин – XXI век
Заведующие кафедрами, профессора и преподаватели общеинженерных дисциплин «Машиноведение и детали машин», «Основы проектирования...
Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин iconЗадача курса «Деталей машин»
Задача курса «Деталей машин» дать необходимые знания для правильного выбора деталей машин, а также развить навыки конструирования...
Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин iconПрограмма дисциплины дпп. Ф. 02. 1 Детали машин
Целью преподавания курса является получение студентами знаний по устройству деталей машин и сборочных единиц (узлов) машин и механизмов,...
Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин iconМетодические указания по выполнению контрольных работ №1 и №2 по дисциплине «Конструкции путевых машин»
Программой предмета: «Конструкция путевых машин» предусмотрено изучение устройств и принципов работы машин и механизмов согласно...
Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин icon«Технология обслуживания и ремонта машин в апк» контрольные вопросы по дисциплине деталей машин и основы конструирования для госэкзамена. Основные критерии работоспособности и расчета деталей машин
Методы выбора допускаемых напряжений и запаса Требования, предъявляемые к деталям машин при их проектировании и конструировании
Методические указания Алюминиевые сплавы в производстве деталей механизмов и машин iconПрограмма дисциплины по кафедре Детали машин
Целью изучения является познание студентами основных принципиальных подходов к расчетам и конструированию деталей, являющихся общими...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница