Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления




НазваниеКурс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления
страница5/21
Дата11.10.2012
Размер1.22 Mb.
ТипДокументы
1   2   3   4   5   6   7   8   9   ...   21

1.7 Процессы принятия управляющих решений


Пусть построена модель системы с соблюдением всех принципов системного подхода, разработаны и “обкатаны” алгоритмы необходимых расчетов, приготовлены варианты управляющих воздействий на систему. Надо понять, что эти воздействия не всегда заключаются в изменениях уровня некоторых входных параметров — это могут быть варианты структурных перестроек системы.

Так вот — все это есть. И что же дальше? Пора и управлять, управлять с единой целью — повышения эффективности функционирования системы (однокритериальная задача) или с одновременным достижением нескольких целей (многокритериальная задача).

Естественно, мы ставим вопрос: “А что будет, если …?” и ожидаем ответа. Но здесь не следует ожидать чуда, нельзя надеяться на однозначный ответ. Если к примеру, мы интересуемся вопросом — “к чему приведет увеличение на 20% закупок цемента?”, то мы должны не удивляться, получив ответ — “Это приведет к увеличению рентабельности производства кирпича на величину, которая с вероятностью 95% не будет ниже 6% и не будет выше 14%”. И это еще очень содержательный ответ, могут быть и более “расплывчатые”!

Здесь уместно в последний раз обратиться к примеру с анализом системы обучения и ответить на возможный вопрос — а как же были использованы выводы системного анализа обучения в КГРИ? Ответ одного из соавторов системного анализа, пишущего эти строки, очень краткий — никак.

Можно теперь открыть еще одну (не последнюю) тайну ТССА. Дело в том, что судьбу разработок по управлению большими системами должно решать только ЛПР, и только этот человек (или коллективный орган) решает вопрос дальнейшей судьбы итогов системного анализа. Важно отметить, что это правило никак не связано ни с “важностью” конкретной отрасли промышленности, торговли или образования, ни с политическими обстоятельствами, ни с государственным строем. Все намного проще — мудрость отцов-основателей ТССА проявилась, прежде всего, в том, что неполнота достоверности выводов системного анализа была ими заранее оговорена.

Поэтому те, кто ведет системный анализ, не должны претендовать на обязательное использование своих разработок; факты отказа от их использования не есть показатель непригодности этих разработок.

С другой стороны, те, кто принимают решения, должны столь же четко понимать, что расплывчатость выводов ТССА есть неизбежность, она может быть обусловлена не промахами анализа, а самой природой или ошибкой постановки задачи, например, попытки управлять такой гигантской системой, как экономика бывшего СССР.

2. Основные понятия математической статистики

2.1 Случайные события и величины, их основные характеристики


Как уже говорилось, при анализе больших систем наполнителем каналов связи между элементами, подсистемами и системы в целом могут быть:

 продукция, т. е. реальные, физически ощутимые предметы с заранее заданным способом их количественного и качественного описания;

 деньги, с единственным способом описания — суммой;

 информация, в виде сообщений о событиях в системе и значениях описывающих ее поведение величин.

Начнем с того, что обратим внимание на тесную (системную!) связь показателей продукции и денег с информацией об этих показателях. Если рассматривать некоторую физическую величину, скажем — количество проданных за день образ­цов продукции, то сведения об этой величине после продажи могут быть получены без проблем и достаточно точно или достоверно. Но, уже должно быть ясно, что при системном анализе нас куда больше интересует будущее — а сколько этой продукции будет продано за день? Этот вопрос совсем не праздный — наша цель управлять, а по об­разному выражению “управлять — значит предвидеть”.

Итак, без предварительной информации, знаний о количественных показателях в системе нам не обой­тись. Величины, которые могут принимать различные значения в зависимости от внешних по отношению к ним условий, принято называть случайными (стохастичными по природе). Так, например: пол встреченного нами человека может быть женским или мужским (дискретная случайная величина); его рост также может быть различным, но это уже непрерывная случайная величина — с тем или иным количеством возможных значений (в зависимости от единицы измерения).

Для случайных величин (далее — СВ) приходится использовать особые, статистические методы их описания. В зависимости от типа самой СВ — дискретная или непрерывная это делается по разному.

Дискретное описание заключается в том, что указываются все возможные значения данной величины (например - 7 цветов обычного спектра) и для каждой из них указывается вероятность или частота наблюдений именного этого значения при бесконечно большом числе всех наблюдений.


Можно доказать (и это давно сделано), что при увеличении числа наблюдений в определенных усло­виях за значениями некоторой дискретной величины частота повторений данного значения будет все больше приближаться к некоторому фиксированному значению — которое и есть вероятность этого значения.

К понятию вероятности значения дискретной СВ можно подойти и иным путем — через случайные собы­тия. Это наиболее простое понятие в теории вероятностей и математической статистике — событие с вероятностью 0.5 или 50% в 50 случаях из 100 может произойти или не произойти, если же его вероятность более 0.5 - оно чаще происходит, чем не происходит. События с вероятностью 1называют достоверными, а с вероятностью 0невозможными.

Отсюда про­стое правило: для случайного события X вероятности P(X) (событие происходит) и P(X) (событие не происходит), в сумме для простого события дают 1.

Если мы наблюдаем за сложным событием — например, выпадением чисел 1..6 на верхней грани игральной кости, то можно считать, что такое событие имеет множество исходов и для каждого из них вероятность составляет 1/6 при симметрии кости.

Если же кость несимметрична, то вероятности отдельных чисел будут разными, но сумма их равна 1.

Стоит только рассматривать итог бросания кости как дискретную случайную величину и мы придем к понятию распределения вероятностей такой величины.

Пусть в результате достаточно большого числа наблюдений за игрой с помощью одной и той же кости мы получили следующие данные:

Таблица 2.1

Грани

1

2

3

4

5

6

Итого

Наблюдения

140

80

200

400

100

80

1000

Подобную таблицу наблюдений за СВ часто называют выборочным распределением, а соответствующую ей картинку (диаграмму) — гистограммой.


Рис. 2.1



Какую же информацию несет такая табличка или соответствующая ей гистограмма?

Прежде всего, всю — так как иногда и таких данных о значениях случайной величины нет и их приходится либо добывать (эксперимент, моделирование), либо считать исходы такого сложного события равновероятными — по на любой из исходов.

С другой стороны — очень мало, особенно в цифровом, численном описании СВ. Как, например, ответить на вопрос: — а сколько в среднем мы выигрываем за одно бросание кости, если выигрыш соответствует выпавшему числу на грани?

Нетрудно сосчитать:

1•0.140+2•0.080+3•0.200+4•0.400+5•0.100+6•0.080= 3.48

То, что мы вычислили, называется средним значением случайной величины, если нас интересует прошлое.

Если же мы поставим вопрос иначе — оценить по этим данным наш будущий выигрыш, то ответ 3.48 принято называть математическим ожиданием случайной величины, которое в общем случае определяется как

Mx = Xi P(Xi); {2 - 1}

где P(Xi) — вероятность того, что X примет свое i-е очередное значение.

Таким образом, математическое ожидание случайной величины (как дискретной, так и непрерывной)— это то, к чему стремится ее среднее значение при достаточно большом числе наблюдений.

Обращаясь к нашему примеру, можно заметить, что кость несимметрична, в противном случае вероятности составляли бы по 1/6 каждая, а среднее и математическое ожидание составило бы 3.5.

Поэтому уместен следующий вопрос - а какова степень асимметрии кости - как ее оценить по итогам наблюдений?

Для этой цели используется специальная величина — мера рассеяния — так же как мы "усредняли" допустимые значения СВ, можно усреднить ее отклонения от среднего. Но так как разности (Xi - Mx) всегда будут компенсировать друг друга, то приходится усреднять не отклонения от среднего, а квадраты этих отклонений. Величину

{2 - 2}

принято называть дисперсией случайной величины X.

Вычисление дисперсии намного упрощается, если воспользоваться выражением

{2 - 3}

т. е. вычислять дисперсию случайной величины через усредненную разность квадратов ее значений и квадрат ее среднего значения.

Выполним такое вычисление для случайной величины с распределением рис. 1.

Таблица 2.2

Грани(X)

1

2

3

4

5

6

Итого

X2

1

4

9

16

25

36




Pi

0.140

0.080

0.200

0.400

0.100

0.080

1.00

Pi•X2•1000

140

320

1800

6400

2500

2880

14040

Таким образом, дисперсия составит 14.04 - (3.48)2 = 1.930.

Заметим, что размерность дисперсии не совпадает с размерностью самой СВ и это не позволяет оценить величину разброса. Поэтому чаще всего вместо дисперсии используется квадратный корень из ее значения — т. н. среднеквадратичное отклонение или отклонение от среднего значения:

{2 - 4}

составляющее в нашем случае = 1.389. Много это или мало?

Сообразим, что в случае наблюдения только одного из возможных значений (разброса нет) среднее было бы равно именно этому значению, а дисперсия составила бы 0. И наоборот - если бы все значения наблюдались одинаково часто (были бы равновероятными), то среднее значение составило бы (1+2+3+4+5+6) / 6 = 3.500; усредненный квадрат отклонения — (1 + 4 + 9 + 16 + 25 + 36) / 6 =15.167; а дисперсия 15.167-12.25 = 2.917.

Таким образом, наибольшее рассеяние значений СВ имеет место при ее равновероятном или равномерном распределении.

Отметим, что значения Mx и SX являются размерными и их абсолютные значения мало что говорят. Поэтому часто для грубой оценки "случайности" данной СВ используют т. н. коэффициент вариации или отношение корня квадратного из дисперсии к величине математического ожидания:

Vx = SX/MX . {2 - 5}

В нашем примере эта величина составит 1.389/3.48=0.399.

Итак, запомним, что неслучайная, детерминированная величина имеет математическое ожидание равное ей самой, нулевую дисперсию и нулевой коэффициент вариации, в то время как равномерно распределенная СВ имеет максимальную дисперсию и максимальный коэффициент вариации.

В ряде ситуаций приходится иметь дело с непрерывно распределенными СВ - весами, расстояниями и т. п. Для них идея оценки среднего значения (математического ожидания) и меры рассеяния (дисперсии) остается той же, что и для дискретных СВ. Приходится только вместо соответствующих сумм вычислять интегралы. Второе отличие — для непрерывной СВ вопрос о том какова вероятность принятия нею конкретного значения обычно не имеет смысла — как проверить, что вес товара составляет точно 242 кг - не больше и не меньше?

Для всех СВ — дискретных и непрерывно распределенных, имеет очень большой смысл вопрос о диапазоне значений. В самом деле, иногда знание вероятности того события, что случайная величина не превзойдет заданный рубеж, является единственным способом использовать имеющуюся информацию для системного анализа и системного подхода к управлению. Правило определения вероятности попадания в диапазон очень просто — надо просуммировать вероятности отдельных дискретных значений диапазона или проинтегрировать кривую распределения на этом диапазоне.
1   2   3   4   5   6   7   8   9   ...   21

Похожие:

Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления iconПрограмма учебной дисциплины «Теория систем и системный анализ»
Сложные системы в современной жизни. Основные исторические вехи развития идей теории систем, системного анализа и системного подхода....
Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления iconУчебной дисциплины «Основы системного анализа» для специальности 036401 «Таможенное дело»
Целью изучения дисциплины является формирование теоретических знаний в области системного анализа, а также практических навыков по...
Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления iconЛекция 6 Модели организационного управления
Анализ проводится на основе системного подхода и предполагает выявление всех существенных элементов задачи и взаимосвязей. Проведение...
Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления iconНегосударственное Аккредитованное Частное Образовательное Учреждение Высшего Профессионального Образования Современная Гуманитарная Академия
Основные школы управления. Природа управления. Цели и задачи менеджмента. Направления управленческой деятельности. Полный цикл процесса...
Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления iconВопросы к экзамену по основам теории систем и системного анализа для потока 07 пи и 09 пи(у)
Простые, сложные и большие системы. Их отличие друг от друга, особенности. Примеры систем
Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления iconПрограмма итогового (государственного) комплексного междисциплинарного экзамена по направлению 521500(080500. 62) «Менеджмент» Квалификация бакалавр менеджмента
Основные школы управления. Природа управления. Цели и задачи менеджмента. Направления управленческой деятельности. Полный цикл процесса...
Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления icon1. Основные понятия теории систем сущность и принципы тсса [Г. И. Корнилов]. 1
Кроме того, важность теории систем системного анализа проявляется при решении задач интеграции информационных систем из разных предметных...
Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления iconИсследование систем управления для специальности: 061100 «Менеджмент организаций»
Учебная дисциплина «Исследование систем управления» освещает теоретические и практические аспекты процессов исследования систем управления....
Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления icon«Основы теории управления»
Курс «Основы теории управления» изучает общие свойств процесса управления в системах. Цель преподавания курса-дать студентам необходимый...
Курс «Основы теории систем и системного анализа» Особенности системного подхода к решению задач управления iconМакроструктура деятельности и иерархия функциональных систем
Уд рассматривается как шаг вперед в развитии теории деятель­ности. С позиций системного подхода критически оцениваются критерии,...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib.znate.ru 2014
обратиться к администрации
Библиотека
Главная страница